

# Emission Reduction of Greenhouse Gases from the Cement Industry

*by C.A. Hendriks<sup>1</sup>, E Worrell<sup>2</sup>, D. de Jager<sup>1</sup>, K. Blok<sup>1</sup>, and P. Riemer<sup>3</sup>* <sup>1</sup>ECOFYS, P.O Box 8408, NL-3503 RK Utrecht, the Netherlands <sup>2</sup>Lawrence Berkeley National Laboratory, Berkeley, California, USA <sup>3</sup>IEA Greenhouse Gas R&D Programme, Cheltenham, UK

### Abstract

5% of global carbon dioxide emissions originates from cement production. About half of it from calcination and half of combustion processes. A wide range of options exists to reduce  $CO_2$  emissions considerably.

# Introduction

Cement is considered one of the most important building materials around the world. It is mainly used for the production of concrete. Concrete is a mixture of inert mineral aggregates, e.g. sand, gravel, crushed stones, and cement. Cement consumption and production is closely related to construction activity, and therefore to the general economic activity. Cement is one of the most produced materials around the world. Due to the importance of cement as a construction material, and the geographic abundance of the main raw materials, i.e. limestone, cement is produced in virtually all countries. The widespread production is also due to the relative low price and high density of cement, that limits ground transportation because of the relative high costs. Generally, the international trade (excluding plants located on the borders) is limited, when compared to the global production.

Cement production is a highly energy intensive production process. The energy consumption by the cement industry is estimated at about 2% of the global primary energy consumption, or almost 5% of the total global industrial energy consumption [WEC, 1995]. Due to the dominant use of carbon intensive fuels, e.g. coal, in clinker making, the cement industry is also a major emitter of  $CO_2$  emissions. Besides energy consumption, the clinker making process also emits  $CO_2$  due to the calcining process. The cement industry contributes 5% of total global carbon dioxide emissions. Therefore Ecofys Energy and Environment and Berkeley National Laboratory made for the IEA Greenhouse Gas R&D Programme an

assessment to the role of the cement industry in  $CO_2$  production and to carbon dioxide emission reduction options [Hendriks, forthcoming].

In this article we will first discuss the historical development and global distribution of cement production, and we give a short description of the production processes. In the next paragraph an overview is presented of the  $CO_2$  emission related to the production processes, followed by an analyse of  $CO_2$  emission reduction options.

## **Historical Production Trends in the Cement Industry**

Global cement production grew from 594 Tg(1) in 1970 to 1453 Tg in 1995 at an average annual growth rate of 3.6% [Cembureau, 1998]. <Table 1> provides historical cement production trends and average annual growth rates for 10 world regions and countries. The regions with the largest production levels in 1995 were China (including Hong Kong), Europe, OECD-Pacific, Rest of Asia, and the Middle East. The largest average annual growth between 1970 and 1995 was seen in the China (12.2% per year), Rest of Asia (7.8% per year), Middle East (7.4% per year), and India (6.6% per year) regions. Growth in Africa (4.5% per year), Latin America (4.1% per year), and OECD-Pacific (3.3% per year) was also relatively high. In contrast, there was very little growth in production in the North America region, and production levels dropped at an average rate of -0.1% per year in Europe during this period. The Eastern Europe/former Soviet Union region showed the largest declines in cement production, averaging 1.3% per year between 1970 and 1995.

|                         | Cement Production |      |      | <b>Average Annual Growth</b> |      |      |           |           |
|-------------------------|-------------------|------|------|------------------------------|------|------|-----------|-----------|
|                         | 1970              | 1975 | 1980 | 1985                         | 1990 | 1995 | 1970-1995 | 1990-1995 |
| Region/Country          | Tg                | Tg   | Tg   | Tg                           | Tg   | Tg   | %         | %         |
| China (incl. Hong Kong) | 27                | 47   | 81   | 148                          | 211  | 477  | 12.2%     | 17.7%     |
| Europe                  | 185               | 194  | 223  | 178                          | 196  | 181  | -0.1%     | -1.7%     |
| OECD-Pacific            | 69                | 83   | 113  | 100                          | 126  | 154  | 3.3%      | 4.1%      |
| Rest of Asia            | 20                | 31   | 49   | 57                           | 89   | 130  | 7.8%      | 8.0%      |
| Middle East             | 19                | 29   | 44   | 75                           | 93   | 116  | 7.4%      | 4.6%      |
| Latin America           | 36                | 52   | 76   | 71                           | 82   | 97   | 4.1%      | 3.4%      |
| Eastern Europe/         | 134               | 177  | 190  | 190                          | 190  | 96   | -1.3%     | -12.7%    |
| former Soviet Union     |                   |      |      |                              |      |      |           |           |
| North America           | 76                | 73   | 79   | 81                           | 81   | 88   | 0.5%      | 1.5%      |
| India                   | 14                | 16   | 18   | 31                           | 49   | 70   | 6.6%      | 7.3%      |
| Africa                  | 15                | 20   | 28   | 35                           | 38   | 44   | 4.5%      | 2.7%      |
| World                   | 594               | 722  | 901  | 965                          | 1156 | 1453 | 3.6%      | 4.7%      |

Table 1. Cement Production Trends and Average Annual Growth Rates for Major World Regions, 1970-1995 Source: Cembureau, 1998.

Figure 1. Cement Production Trends in Major World Regions, 1970 to 1995. Source: Cembureau, 1998



# **Cement Production Process**

Three production steps are distinguished in the description of the production of cement:

- Preparing raw materials: Mixing/homogenising, grinding and preheating (drying) produces the raw meal.
- Burning of raw meal to form cement clinker in the kiln: The components of the raw meal react at high temperatures (900-1500 °C) in the precalciner and in the rotary kiln, to give cement clinker.
- Finish grinding of clinker and mixing with additives: After cooling the clinker is ground together with additives.

The theoretical heat requirement for clinker making, the main substance of cement, is calculated to be about  $1.75 \pm 0.1$  MJ per kg [Taylor, 1992]. The actual heat requirement is higher, and depends on the type of process applied. Cement production processes generally distinguished are wet process, semi-wet process, semi-dry and Lepol process, and dry process. For the production of clinker, two types of kilns are distinguished: rotary kilns and shaft kilns. The former is mainly used in industrialised countries, while the latter is more in use in China [Peikang, 1997]. <Table 2> gives a summary of energy use of the various cement production processes.

|                        |       | F     | Rotary Ki | Shaft Kiln(China) |           |
|------------------------|-------|-------|-----------|-------------------|-----------|
|                        | Wet   | Lepol | Long dry  | Short dry kiln    |           |
| Fuel use (MJ/kg)       | 5.9   | 3.6   | 4.2       | 2.9 - 3.4         | 3.7 - 6.6 |
| Power use (kWh/kg)     | 0.025 | 0.030 | 0.025     | 0.022             |           |
| Primary energy (MJ/kg) | 6.2   | 3.9   | 4.5       | 3.5 - 3.7         |           |

| $1 \text{ abic } 2$ , $5  abit many fable of the math cherry as (11) per (x_i).$ |
|----------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------|

### **Carbon Dioxide Emissions from the Cement Production Process**

Carbon dioxide emissions in cement manufacturing come directly from combustion of fossil fuels and from calcining the limestone in the raw mix. An indirect and significantly smaller source of  $CO_2$  is from consumption of electricity assuming that the electricity is generated from fossil fuels. Roughly half of the emitted  $CO_2$  originates from the fuel and half originates from the conversion of the raw material.

#### **Carbon Dioxide Emission from Calcination (Process Emissions)**

Process  $CO_2$  is formed by calcining which can be expressed by the following equation:

CaCO<sub>3</sub> -> CaO + CO<sub>2</sub> 1 kg 0.56 kg+ 0.44 kg

The share of CaO in clinker amounts to 64-67%. The remaining part consists of iron oxides and aluminium oxides.  $CO_2$  emissions from clinker production amounts therefore at about 0.5 kg/kg clinker. The specific process  $CO_2$  emission for cement production depends on the ratio clinker/cement. This ratio varies normally from 0.5 to 0.95.

#### **Carbon Dioxide Emissions from Fuel Use**

Practically all fuel is used during pyroprocessing during the production of the clinker. The pyroprocess removes water from the raw meal, calcines the limestone at temperatures between 900 and 1000°C and finally clinker the kiln material at about 1500 °C. The amount of carbon dioxide emitted during this process is influenced by the type of fuel used (coal, fuel oil, natural gas, petroleum coke, alternative fuels).

The total CO<sub>2</sub> emission during the cement production process depends mainly on:

- Type of production process (efficiency of the process and sub-processes)
- Fuel used (coal, fuel oil, natural gas, petroleum coke, alternative fuels)
- Clinker/cement ratio (percentage of additives)

<Table 3> shows the carbon dioxide emission from the cement production (dry and wet-process) in relation to the clinker/cement ratio and fuel used. The cement/clinker ratio may vary by adding more or less additives to the cement. Not accounted for are the carbon dioxide emissions attributable to mobile equipment used for winning of raw material, used for transport of raw material and cement, and used on the plant site.

Table 3.  $CO_2$  emissions in kg per kg cement produced for dry and wet cement production process for various fuels and various clinker/cement ratios. Assumptions: Electricity use: 0.38 MJe/kg of clinker; Average emission factor of  $CO_2$  of electricity production: 0.22 kg/MJe. Fuel use (dry process): 3.35 MJ/kg of clinker; (wet process): 5.4 MJ/kg of clinker.

|                 | Process<br>emissions | Process and fuel- |      |         | relate | d emissi | ions      |         |       |
|-----------------|----------------------|-------------------|------|---------|--------|----------|-----------|---------|-------|
|                 |                      | Dry process       |      |         |        | We       | t Process |         |       |
| Clinker/ cement | Clinker              | Coal              | Fuel | Natural | Waste  | Coal     | Fuel      | Natural | Waste |

| ratio          |      |      | Oil  | gas  |      |      | Oil  | gas  |      |
|----------------|------|------|------|------|------|------|------|------|------|
| 55%            | 0.28 | 0.55 | 0.50 | 0.47 | 0.36 | 0.67 | 0.59 | 0.53 | 0.36 |
| 75%            | 0.38 | 0.72 | 0.66 | 0.61 | 0.47 | 0.88 | 0.77 | 0.69 | 0.47 |
| (Portland) 95% | 0.49 | 0.89 | 0.81 | 0.75 | 0.57 | 1.09 | 0.95 | 0.90 | 0.57 |

### **Global Carbon Dioxide Emission from Cement Production Process**

In this paragraph we provide an estimate of both process and energy emissions from global cement production in 1994 for ten regions and countries (see <Table 4>). This estimate is based on current, publicly available data for the cement sector. Details on the methodology is given by Hendriks [forthcoming].

World average primary energy intensity was 4.8 MJ/kg cement, with the most energy intensive regions being Eastern Europe and the former Soviet Union (5.5 MJ/kg), North America (5.4 MJ/kg) and the Middle East (5.1 MJ/kg). Estimated carbon dioxide emissions from cement production in 1994 were 1126 Tg  $CO_2$ ,(2) 587 Tg  $CO_2$  from process emissions and 539 Tg  $CO_2$  from energy use. These emissions account for 5% of 1994 world carbon emissions based on a total of 22.7 103 Tg  $CO_2$  (6.2 GtC) reported by the Carbon Dioxide Information and Analysis Center [Marland, 1998].

The average world carbon intensity of carbon emissions in cement production is  $0.81 \text{ kg CO}_2/\text{kg}$  cement. While China is the largest emitter, the most carbon intensive cement region in terms of carbon emissions per kg of cement produced is India (0.93 kg CO<sub>2</sub>/kg), followed by North America (0.89 kg CO<sub>2</sub>/kg), and China (0.88 kg CO<sub>2</sub>/kg).

|                       | Cement<br>Production | Clinker/Cement<br>Ratio | Primary<br>Intensity | Primary<br>Energy | Process<br>Carbon<br>Emissions | Carbon<br>Emissions.<br>Energy<br>Use | Total<br>Carbon<br>Emissions |
|-----------------------|----------------------|-------------------------|----------------------|-------------------|--------------------------------|---------------------------------------|------------------------------|
| <b>Region/Country</b> | Tg                   | %                       | MJ/\kg               | PJ                | Tg CO <sub>2</sub>             | Tg CO <sub>2</sub>                    | Tg CO <sub>2</sub>           |
| China                 | 423                  | 83%                     | 5.0                  | 2117              | 175                            | 197                                   | 372                          |
| Europe                | 182                  |                         | 4.1                  | 749               | 73                             | 56                                    | 129                          |
| OECD Pacific          | 151                  |                         | 3.5                  | 533               | 65                             | 41                                    | 105                          |
| Other ASIA            | 124                  |                         | 4.9                  | 613               | 56                             | 179                                   | 105                          |
| Middle East           | 111                  |                         | 5.1                  | 563               | 51                             | 44                                    | 95                           |
| North America         | 88                   |                         | 5.4                  | 480               | 39                             | 40                                    | 78                           |
| EE/FSU                | 101                  |                         | 5.5                  | 558               | 42                             | 38                                    | 80                           |
| Latin America         | 97                   |                         | 4.7                  | 462               | 41                             | 30                                    | 71                           |
| India                 | 62                   | 89%                     | 5.0                  | 309               | 28                             | 30                                    | 60                           |
| Africa                | 41                   |                         | 4.9                  | 201               | 18                             | 15                                    | 33                           |

| Table 4. | 1994 | Global | Carbon  | Emissions | from | Cement | Production                              |
|----------|------|--------|---------|-----------|------|--------|-----------------------------------------|
| 100000   |      | 010000 | 0000000 | <b>_</b>  |      | 00000  | 1.0000000000000000000000000000000000000 |

| World Total | 1381 |  | 4.8 | 6585 | 587 | 830 | 1126 |
|-------------|------|--|-----|------|-----|-----|------|
|-------------|------|--|-----|------|-----|-----|------|

### **Reduction of Carbon Dioxide Emissions**

Emissions of carbon dioxide can be reduced by:

- improvement of the energy efficiency of the process
- shifting to a more energy efficient process (e.g. from (semi) wet to (semi) dry process)
- replacing high carbon fuels by low carbon fuels
- applying lower clinker/cement ratio (increasing the ratio additives/cement): blended cements.
- application of alternative cements (mineral polymers)
- removal of CO<sub>2</sub> from the flue gases

These options will be discussed in this section.

#### **Energy Efficiency Improvement and Shifting to More Energy Efficient Processes**

Improvement of energy efficiency reduces the emissions of carbon dioxide from fuel and electricity use, and may reduce the costs of producing cement. Improvement may be attained by applying more energy efficient process equipment and by replacing old installations by new ones or shifting to complete new types of cement production processes.

Energy efficiency improvement possibilities:

- conversion from direct to indirect firing
- improved recovery from coolers
- installation of roller presses, vertical mills and high efficiency separators.

By far the largest proportion of energy consumed in cement manufacture consists of fuel that is used to heat the kiln. Therefore the greatest gain in reducing energy input may come from improved fuel efficiency.

Another approach to improve energy efficiency is to shift to another cement production technology. In general it can be said that the dry process is much more energy efficient than the wet process, and the semi-wet somewhat more energy efficient than the semi-dry process. The processes are exchangeable to a large extent, but the applicability also depends on the raw material available. <Table 5> gives the main options to improve the energy efficiency of cement production facilities.

| Technique                                    | Description                                                                                    | Emission reduction/<br>energy improvement | Economics                                                                               |
|----------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------|
| Process Control<br>and Management<br>Systems | Automated computer control<br>may help to optimise the<br>combustion process and<br>conditions | Typically 2.5-5%                          | Economics of advanced<br>processes very good (pay<br>back time as short as 3<br>months) |
| Raw Meal                                     | Use of gravity-type                                                                            | Reduction power use                       | No information available                                                                |

Table 5. Energy efficiency improvement options for cement production processes

| Homogenising<br>Systems                                                                                                                                                                                                           | homogenising silos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1.4-4 kWh/t clinker)                                                                                                                                                                                                                                                                                                                    | for this study                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conversion from<br>Wet to Semi-Wet<br>Process                                                                                                                                                                                     | Moisture content of raw<br>meal reduced by slurry press<br>filter.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8-1.6 GJ/t clinker<br>(3-5 kWh increase of<br>power consumption)                                                                                                                                                                                                                                                                       | Reduced fuel costs partially off-set the costs.                                                                                                                                                                                                                                                                                                                                                                                  |
| Conversion from<br>Wet to Semi-Dry<br>Process                                                                                                                                                                                     | Moisture content of raw<br>material reduced through<br>thermal drying system                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Estimated at 2 GJ/t<br>clinker. Small increase<br>of power consumption                                                                                                                                                                                                                                                                   | No capital information<br>available for this study                                                                                                                                                                                                                                                                                                                                                                               |
| Conversion from<br>Wet to Dry Process                                                                                                                                                                                             | Complex operation, leaving<br>only the structural parts<br>intact                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Estimated at 2.2 GJ/t<br>(increase of power by<br>about 10 kWh/t)                                                                                                                                                                                                                                                                        | High costs (133 US\$/t<br>annual capacity), but vary<br>across the world. May be<br>economically feasible                                                                                                                                                                                                                                                                                                                        |
| Conversion from<br>dry to multi-stage<br>preheater kiln                                                                                                                                                                           | Four or five stage preheating<br>reduces heat losses, and<br>sometimes reduces pressure<br>drop                                                                                                                                                                                                                                                                                                                                                                                                                               | Depending on original<br>process. In one<br>example reduction<br>from 3.9 to 3.4 GJ/t                                                                                                                                                                                                                                                    | Estimated at 30-40 US\$/t<br>annual capacity                                                                                                                                                                                                                                                                                                                                                                                     |
| Conversion from<br>dry to precalciner<br>kiln                                                                                                                                                                                     | Increase of capacity, and<br>lowering specific fuel<br>consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depending on original<br>process. Estimated at<br>12% (0.44 GJ/t)                                                                                                                                                                                                                                                                        | Estimated at 28 US\$/t<br>annual capacity                                                                                                                                                                                                                                                                                                                                                                                        |
| Conversion from<br>Cooler to Grate<br>Cooler                                                                                                                                                                                      | Large capacity and efficient heat recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reduction of 0.1-0.3<br>GJ/t (increase in power<br>by 3 kWh/t)                                                                                                                                                                                                                                                                           | Probably only attractive<br>when installing a<br>precalciner simultaneously                                                                                                                                                                                                                                                                                                                                                      |
| Improved                                                                                                                                                                                                                          | Raw meal preheated in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fuel saving of 6.3% (to                                                                                                                                                                                                                                                                                                                  | Payback time reported to                                                                                                                                                                                                                                                                                                                                                                                                         |
| Preheating (LEPOL<br>Kiln)                                                                                                                                                                                                        | two-stage grate preheater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.3 GJ/t). 1% less power use                                                                                                                                                                                                                                                                                                             | be satisfactory                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Preheating (LEPOL<br>Kiln)<br>Optimisation of<br>Heat Recovery in<br>Clinker Cooler                                                                                                                                               | two-stage grate preheater.<br>Heat recovery improved by<br>reduction of excess air<br>volume, control of clinker<br>bed depth and new grates.                                                                                                                                                                                                                                                                                                                                                                                 | 3.3 GJ/t). 1% less<br>power use<br>Estimated at 0.5 GJ/t in<br>the US, and 0.2 GJ/t in<br>India                                                                                                                                                                                                                                          | be satisfactory<br>No specific cost<br>information available for<br>this study                                                                                                                                                                                                                                                                                                                                                   |
| Preheating (LEPOL<br>Kiln)<br>Optimisation of<br>Heat Recovery in<br>Clinker Cooler<br>High efficiency<br>Motors and Drives                                                                                                       | two-stage grate preheater.<br>Heat recovery improved by<br>reduction of excess air<br>volume, control of clinker<br>bed depth and new grates.<br>Variable speed drives,<br>improved control strategies<br>and high-efficiency motors                                                                                                                                                                                                                                                                                          | 3.3 GJ/t). 1% less<br>power use<br>Estimated at 0.5 GJ/t in<br>the US, and 0.2 GJ/t in<br>India<br>Estimated power<br>savings ranging from 3<br>to 8%.                                                                                                                                                                                   | be satisfactory<br>No specific cost<br>information available for<br>this study<br>High-efficiency motors<br>cost about the same or only<br>little bit more than regular<br>motors                                                                                                                                                                                                                                                |
| Preheating (LEPOL<br>Kiln)<br>Optimisation of<br>Heat Recovery in<br>Clinker Cooler<br>High efficiency<br>Motors and Drives<br>Adjustable Speed<br>Drives                                                                         | two-stage grate preheater.<br>Heat recovery improved by<br>reduction of excess air<br>volume, control of clinker<br>bed depth and new grates.<br>Variable speed drives,<br>improved control strategies<br>and high-efficiency motors<br>Reducing throttling and<br>coupling losses by replacing<br>fixed speed AC motors                                                                                                                                                                                                      | <ul> <li>3.3 GJ/t). 1% less<br/>power use</li> <li>Estimated at 0.5 GJ/t in<br/>the US, and 0.2 GJ/t in<br/>India</li> <li>Estimated power<br/>savings ranging from 3<br/>to 8%.</li> <li>Estimated at 10 kWh/t<br/>cement</li> </ul>                                                                                                    | be satisfactory<br>No specific cost<br>information available for<br>this study<br>High-efficiency motors<br>cost about the same or only<br>little bit more than regular<br>motors<br>Depends strongly on size<br>of system. Estimated at<br>about 1 US\$/t cement                                                                                                                                                                |
| Preheating (LEPOL<br>Kiln)<br>Optimisation of<br>Heat Recovery in<br>Clinker Cooler<br>High efficiency<br>Motors and Drives<br>Adjustable Speed<br>Drives<br>Efficient Grinding<br>Technologies                                   | two-stage grate preheater.<br>Heat recovery improved by<br>reduction of excess air<br>volume, control of clinker<br>bed depth and new grates.<br>Variable speed drives,<br>improved control strategies<br>and high-efficiency motors<br>Reducing throttling and<br>coupling losses by replacing<br>fixed speed AC motors<br>High-pressure mills (like the<br>Horomill) has improved<br>grinding characteristics                                                                                                               | 3.3 GJ/t). 1% less<br>power useEstimated at 0.5 GJ/t in<br>the US, and 0.2 GJ/t in<br>IndiaEstimated power<br>savings ranging from 3<br>to 8%.Estimated at 10 kWh/t<br>cementEstimated at 16-19<br>kWh/t (40-50%)                                                                                                                        | be satisfactory<br>No specific cost<br>information available for<br>this study<br>High-efficiency motors<br>cost about the same or only<br>little bit more than regular<br>motors<br>Depends strongly on size<br>of system. Estimated at<br>about 1 US\$/t cement<br>Estimates ranging from 2.5<br>to 8 US\$/t annual capacity.<br>Operation costs may be<br>reduced by 30-40%                                                   |
| Preheating (LEPOL<br>Kiln)<br>Optimisation of<br>Heat Recovery in<br>Clinker Cooler<br>High efficiency<br>Motors and Drives<br>Adjustable Speed<br>Drives<br>Efficient Grinding<br>Technologies<br>High-efficiency<br>Classifiers | two-stage grate preheater.<br>Heat recovery improved by<br>reduction of excess air<br>volume, control of clinker<br>bed depth and new grates.<br>Variable speed drives,<br>improved control strategies<br>and high-efficiency motors<br>Reducing throttling and<br>coupling losses by replacing<br>fixed speed AC motors<br>High-pressure mills (like the<br>Horomill) has improved<br>grinding characteristics<br>Material stays longer in the<br>separator, leading to sharper<br>separation, thus reducing<br>overgrinding | <ul> <li>3.3 GJ/t). 1% less<br/>power use</li> <li>Estimated at 0.5 GJ/t in<br/>the US, and 0.2 GJ/t in<br/>India</li> <li>Estimated power<br/>savings ranging from 3<br/>to 8%.</li> <li>Estimated at 10 kWh/t<br/>cement</li> <li>Estimated at 16-19<br/>kWh/t (40-50%)</li> <li>Estimated at 1.7-2.3<br/>kWh/t cement (8%)</li> </ul> | be satisfactory<br>No specific cost<br>information available for<br>this study<br>High-efficiency motors<br>cost about the same or only<br>little bit more than regular<br>motors<br>Depends strongly on size<br>of system. Estimated at<br>about 1 US\$/t cement<br>Estimates ranging from 2.5<br>to 8 US\$/t annual capacity.<br>Operation costs may be<br>reduced by 30-40%<br>Costs are estimated at 2.5-<br>3 US\$/t cement |

| Efficient Kiln<br>Technology<br>(China) | size and shape, insulation and computer control.                                                                                   | for the 1990 mix (10-<br>30%)                                                        | 230 Yuan/t annual<br>capacity. Pay back time of<br>less than 2 years.  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Fluidised bed Kiln                      | Rotary kiln replaced by<br>stationary kiln leading to<br>lower capital costs, wider<br>variety of fuel use and lower<br>energy use | Fuel use of 2.9 to 3.35<br>GJ/t clinker (also lower<br>NOx emissions)                | Lower investment and<br>maintenance costs<br>expected                  |
| Advance<br>Comminution<br>Technologies  | Non-mechanical 'milling'<br>technologies as ultrasound.<br>Not commercially available<br>in coming decades                         | Expected (theoretical)<br>savings are large                                          | No information available<br>due to preliminary stage of<br>development |
| Mineral Polymers                        | Mineral polymers are made<br>from alumino-silicates<br>leaving calcium oxide as the<br>binding agent.                              | Preliminary estimates<br>suggests 5 to 10 times<br>lower energy use and<br>emissions | No specific cost<br>information was available<br>for this study.       |

#### **Replacing High-Carbon Fuels by Low-Carbon Fuels**

More than 90% of the energy used in the cement production is originating from fuels. The rest (5-10%) of the primary energy consumption is electricity. A main option to reduce carbon dioxide emissions is to reduce the carbon content of the fuel: e.g. shifting from coal to natural gas. An important opportunity to reduce the (long-cycle) carbon emission is the application of waste-derived alternative fuels. This could at the same time diminish the disposal of waste material and reduces the use of fossil fuels. Disadvantage may be the adverse effects on the cement quality and increased emission of harmful gases. Some types of alternative fuels: Gaseous alternative fuels (Coke oven gases, refinery gases, pyrolisis gas, landfill gas); Liquid alternative fuels (Halogen-free spend solvents, mineral oils, distillation residues, hydraulic oils, insulating oils); and Solid alternative fuels (Waste wood, dried sewage sludge, plastic, agricultural residues, tyres, petroleum coke, tar).

The European cement industry used in 1990 between 0.75 and 1 Tg per year of secondary fuels, equivalent to 25-35 PJ. In 1993, 9% of the thermal energy consumption in the European cement industry originated from alternative fuels [Cembureau, 1997]. A number of issues should be considered while using waste-derived fuels: (i) Energy efficiency of waste combustion in cement kilns; (ii) Constant cement product and fuel quality; (iii) Emissions to atmosphere; (iv) Trace elements and heavy metal; (v) Alternative fate of waste; and (vi) Production of secondary waste.

Waste processing in the cement industries is feasible and current practise. Waste as alternative fuel is increasingly used in cement plants. Waste may reduce  $CO_2$  emissions by 0.1 to 0.5 kg/kg cement

produced compared to current used production techniques using fossil fuels. The use of waste generates no additional emissions, although care should be taken for high volatile elements as mercury and thallium. On the other hand, the use of waste does not impair clear environmental advantages, besides the reduction of substituted fossil fuels.

#### **Blended Cements**

The production of clinker is the most energy-intensive step in the cement manufacturing process and causes large process emissions of  $CO_2$ . In blended cement, a portion of the clinker is replaced with

The future potential for application of blended cements depends on the current application level, on the availability of blending materials, and on standards and legislative requirements. Worrell [1995] tried to estimate the potential for carbon emission reduction on a national basis for 24 countries in the OECD, Eastern Europe and Latin-America. They estimated the minimum availability of blending materials on the basis of pig iron production and coal combustion. The potential emission reduction varied between 0% and 29%. The average emission reduction for all countries (producing 35% of world cement in 1990) was estimated at 22%. It was negligible for countries with already a large share of blended cement production (e.g. The Netherlands) or with a low availability of blending materials; i.e. countries without iron production of blended cements and a well developed industry or fossil based power industry (e.g. United Kingdom, United States) [Worrell, 1995]. The clinker/cement ratio for China is estimated at 85% [Feng, 1995]. Considering the large iron and coal use in power production, a large potential for blended cement may also be expected in the Worlds largest cement maker.

The costs of blending materials depend strongly on the transportation costs, and may vary between 15 and 30 US\$/Gg for fly ash and approximately 24 US\$/Gg for blast furnace slag. Shipping costs may increase the price significantly, depending on distance and shipping mode. The prices are still considerably lower than the production costs of cement, estimated at approximately 36 US\$/Gg (1990) in the United States [Huhta, 1992]

Summarising, the global potential for carbon dioxide emission reduction through producing blended cement is estimated to be at least 5% of total carbon dioxide emissions from cement making (56 Tg  $CO_2$ ), but may be as high as 20%. The potential savings will vary by country, and even by region.

#### **Carbon Dioxide Removal**

Reduction of carbon dioxide emissions can be obtained by applying carbon dioxide removal. In this technique,  $CO_2$  is separated during or after the production process and subsequently stored or disposed of outside the atmosphere. In some cases the recovered  $CO_2$  can be used for other purposes. The  $CO_2$  removal process can be split into three separate steps: recovery of the  $CO_2$  (often including drying and compressing), transport of the  $CO_2$  to a location where it is handled further, and utilisation, storage or disposal of  $CO_2$ . The  $CO_2$  can be recovered from the flue gases, originating from the calcination process as well as from the combustion processes. Typical  $CO_2$ - concentrations in the flue gases range from 14 to 33%.

Because of the high share of  $CO_2$  in flue gases originating from the calcination process (and not from a combustion process), combustion in a  $CO_2/O_2$  atmosphere may, a priori, be a promising technique to recover the  $CO_2$ . A chemical absorption process seems to be less appropriate because of the high heat requirement of the process.

In the  $CO_2/O_2$  technique oxygen instead of air is used for the combustion, i.e. the nitrogen diluent is removed in an air separation plant before the fuel is oxidised. A problem in this approach is the high stoichiometric combustion temperatures. This problem can be solved, and even turned into an

advantage, by recycling produced  $CO_2$ . In this way adding more or less recycled  $CO_2$  can control the combustion temperature. The  $CO_2$  in these systems acts as the required temperature moderator. An additional benefit is that all impurities are stored underground, and that the need for DeSOx or DeNOx facilities is not present. Experiences with this technique have been gained in Japan and the United States. In these experiments the main focus lay on the electricity production facilities.

In the scope of this stude a preliminary calculation on the energy requirement has been made: assuming 90% capture efficiency, dry process (3.35 MJ/kg clinker), clinker/ecment ratio of 0.95, and fuel oil as fuel, the total required power consumption will be about 0.86 MJe. The total  $CO_2$  production amounts then to 1.08 kg/kg cement, and the overall capture efficiency amounts to 70%. The nett  $CO_2$  emissions amounts then to 0.32 kg per kg cement (see for comparison <Table 3>).

At this stage of research, however, it is not clear whether this technique can be applied to cement production facilities. Various questions remain unsolved like the influence on the combustion medium on the calcination process, whether or not the process can be sufficiently leak-free. Cost estimates are therefore not available yet.

### Conclusions

In 1994 cement industry consumed 6.6 EJ of primary energy, corresponding with 2% of world energy consumption. Worldwide 1126 Tg  $CO_2$  or 5% of the  $CO_2$  production originates from cement production. The carbon intensity of cement making amounts to 0.81 kg  $CO_2$ /kg cement. In India, North America, and China the carbon intensity is about 10% higher than on average. Specific carbon emissions range from 0.36 kg to 1.09 kg  $CO_2$ /kg cement mainly depending on type of process, clinker/cement ratio and fuel used. On average a little above 50% of the emissions originates from the calcination step.

To reduce the carbon intensity the following options are identified: improving energy efficiency, shifting to more energy efficient process, shifting to lower carbon fuels, shifting to lower clinker/cement ratio, shifting to mineral polymers and removal of  $CO_2$ .

Seventeen different energy efficiency improvement options are identified. The improvement ranges from a small percentage to more than 25% per option, depending on the reference case (i.e type of process, fuel used) and local situation. The use of waste instead of fossil fuel may reduce  $CO_2$  emissions by 0.1 to 0.5 kg/kg cement (varying from 20 to 40%). On average blended cements may reduce carbon emissions from 0.81 kg to 0.64 kg per kg cement (20%). Global potential of blended cements reducing carbon emissions is at least 5% but it is estimated to be as high as 20%. An end-of-pipe technology to reduce carbon emissions may be  $CO_2$  removal. Probably the main technique is combustion under oxygen while recycling  $CO_2$ . However, considerably research is required to all unknown aspects of this technique.

## References

Hendriks, C.A., E. Worrell, L. Price, and N. Martin, forthcoming, *Greenhouse Gases from Cement Production*, Ecofys Energy and Environment, Utrecht, the Netherlands, and Berkeley National Laboratory, Berkeley, California.

Cembureau, 1998. World Statistical Review No.18, World Cement Market in Figures 1913/1995, Cembureau, Brussels, Belgium.

Feng, L., M. Ross, and S. Wang, 1995. *Energy Efficiency of Chinas Cement Industry*, Energy, the International Journal 7 20 pp669-681 (1995).

Huhta, R.S., 1992. Operating Costs of U.S. Cement Plants, Rock Products, November 1992, pp.30-34.

Marland, G., Boden, T. and Brenkert, A. 1998 *Revised Global CO<sub>2</sub> Emissions from Fossil Fuel Burning, Cement Manufacture, and Gas Flaring, 1751-1995*, Oak Ridge, TN: Carbon Dioxide Information and Analysis Center, Oak Ridge National Laboratory.

Peikang, R., C. Yuanshen, Z. Yuhui, and Z. Qingshan, 1997. *Chinas Cement Industry in 1996 and Development Prospects for 1997*, World Cement 6 28 pp.5-8 (1997).

Taylor, 1992

WEC, 1995. Efficient Use of Energy Utilizing High Technology: An Assessment of Energy Use in Industry and Buildings, World Energy Council, London, United Kingdom.

Worrell, E., R. Smit, D. Phylipsen, K. Blok, F. van der Vleuten and J. Jansen, 1995. *International Comparison of Energy Efficiency Improvement in the Cement Industry*, Proceedings ACEEE 1995 Summer Study on Energy Efficiency in Industry (Volume II).

(1) 1 Tg = 1 million tonne =  $10^9$  kg

(2) 1 Tg CO<sub>2</sub> = 0.27 Tg C = 0.27 Million tonne Carbon (MtC)

