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Abstract
A number of negative emission technologies (NETs) have been proposed to actively 
remove CO2 from the atmosphere, with enhanced silicate weathering (ESW) as a rela-
tively new NET with considerable climate change mitigation potential. Models cali-
brated to ESW rates in lab experiments estimate the global potential for inorganic 
carbon sequestration by ESW at about 0.5– 5 Gt CO2 year−1, suggesting ESW could 
be an important component of the future NETs mix. In real soils, however, weath-
ering rates may differ strongly from lab conditions. Research on natural weathering 
has shown that biota such as plants, microbes, and macro- invertebrates can strongly 
affect weathering rates, but biotic effects were excluded from most ESW lab assess-
ments. Moreover, ESW may alter soil organic carbon sequestration and greenhouse 
gas emissions by influencing physicochemical and biological processes, which holds 
the potential to perpetuate even larger negative emissions. Here, we argue that it is 
likely that the climate change mitigation effect of ESW will be governed by biological 
processes, emphasizing the need to put these processes on the agenda of this emerg-
ing research field.
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1  |  INTRODUC TION

Conventional climate change mitigation alone will not be able to 
stabilize atmospheric carbon dioxide (CO2) concentrations at a level 
compatible with the “well below 2°C warming” limit of the United 
Nations’ Paris Agreement (UNFCCC, 2015). Safe and scalable nega-
tive emission technologies (NETs), which actively remove CO2 from 
the atmosphere and ensure long- term carbon (C) sequestration, will 
be needed to meet this goal (Gasser et al., 2015). Depending on how 
fast greenhouse gas (GHG) emissions are reduced, 100– 1000 Gt CO2 
will have to be removed from the atmosphere by 2100 (IPCC, 2018, 
2021; Psarras et al., 2017; Rockström et al., 2017). Decarbonization 
roadmaps show that NETs must be deployed quickly and at a large 
scale: CO2 removal would need to reach about 5 Gt CO2 year−1 by 
2050, and increase further to about 10 Gt CO2 year−1 between 2050 
and 2100 (Obersteiner et al., 2018; Rockström et al., 2017). Fast 
progress in achieving cost- efficient NETs is needed if we are to meet 
the Paris Agreement's ambitions (Hilaire et al., 2019).

Enhanced silicate weathering (ESW) is a relatively new, low- tech 
NET with considerable climate change mitigation potential (Beerling 
et al., 2020; Fuss et al., 2018; Goll et al., 2021; Köhler et al., 2010; 
Strefler et al., 2018). The mechanism of CO2 removal by ESW is 
based on speeding up the natural process of silicate weathering. 
The principle of ESW is the reaction of silicate grains with CO2 and 
water to form bicarbonates which can either leach out of the soil 
into the groundwater, rivers, and eventually the ocean, or precipitate 
in the soil, forming pedogenic carbonates (Figure 1). The latter re-
duces short- term C storage approximately by half, but in both cases, 
C is stored for hundreds of years and longer (Hartmann et al., 2013; 
Köhler et al., 2010).

The proof of principle that silicate weathering draws down atmo-
spheric CO2 can be found in the geological record, where the nega-
tive temperature- weathering feedback is believed to have stabilized 
Earth's climate (Berner, 2004; Walker et al., 1981). Increasing CO2 
concentrations raise temperatures and increase rainfall, thereby ac-
celerating silicate weathering rates and atmospheric CO2 removal, 
hence, slightly mitigating the warming trend by about 0.04 W m−2 K−1 
(Goll et al., 2014). The idea of ESW is to increase C sequestration 
through mineral weathering by actively amending soils with finely 
ground, fast- weathering silicates such as basalt (Hartmann et al., 
2013; Schuiling & Krijgsman, 2006). Soil amendment with basalt, an 
abundant rock rich in calcium (Ca) and magnesium (Mg), is partic-
ularly promising in agriculture, due to the potential for co- delivery 
of multiple ecosystem services, including increased crop yield (Goll 

et al., 2021; Van Straaten, 2006). In fact, the positive effects on soil 
and crops are the primary current reason for the use of basalt and 
other silicates in agriculture (Haque et al., 2020a; Leonardos et al., 
1987; Van Straaten, 2006; Wang, Wang, et al., 2018; Zhang et al., 
2018). Another potential application that is gaining interest is the 
use of silicates for nature restoration, as this would help to abate soil 
acidification and replenish soil calcium (Likens, 2017; Peters et al., 
2004; Taylor et al., 2021).

Early lab experiments and modeling indicate the highest poten-
tial for ESW on cation- depleted soils in humid and warm environ-
ments (Amann & Hartmann, 2019). Estimates of the global inorganic 
C sequestration potential of ESW range widely between 0.5 and 5 Gt 
CO2 year−1 (depending on cost assumptions, among others; Beerling 
et al., 2020; Fuss et al., 2018; Goll et al., 2021). This emphasizes the 
clear potential of ESW to provide a substantial part of the required 
decarbonization. However, the uncertainty on current estimates 
derived from the lab experiments and modeling is large and the 
largest uncertainties concern the in natura weathering rate, the co- 
benefit of increased plant growth, and associated C sequestration 
(Fuss et al., 2018; Goll et al., 2021). Field assessments of inorganic C 
sequestration by ESW indicate large variability, even between sites 
with similar climate, soil, silicate material, and rate of application 
(Haque et al., 2020a). Moreover, in the real world, processes such 
as secondary mineral formation, soil pore water saturation, and low 
water- silicate contact rates can substantially slow down weather-
ing rates (Zhang et al., 2018)— as was the case in one of the first 
ESW mesocosm experiments (Amann et al., 2020). In addition, ESW 
will almost certainly impact primary production, soil organic carbon 
(SOC) sequestration, and soil GHG emissions. These impacts will af-
fect the climate change mitigation potential of ESW but have not yet 
been considered in current calculations.

2  |  BIOTA STIMUL ATING SILIC ATE 
WE ATHERING

We postulate that biota are key to understanding the effect of ESW 
on atmospheric GHG concentrations and anticipate that an explicit 
consideration of the biotic context is necessary to unlock ESW’s full 
climate change mitigation potential (Figure 2). Much of our ESW 
knowledge is derived from lab experiments that excluded biota such 
as plants and soil fauna, although it is known that natural weath-
ering is strongly influenced by biota (Berner, 2004). Many biota 
have evolved mechanisms to enhance the weathering of minerals 

F I G U R E  1  Simplified silicate 
weathering reaction indicating the two 
pathways: Bicarbonate leaching out of 
the system and carbonate precipitation 
in the soil
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and access the nutrients contained in them (Dontsova et al., 2020; 
Zaharescu et al., 2020). During Earth's history, this biotic stimula-
tion of mineral weathering has substantially altered the mobiliza-
tion of multiple macro-  and micro- elements (Bergman et al., 2004; 
Zaharescu et al., 2020), inducing for example global shifts in the pro-
vision of dissolved silicates to aquatic and marine ecosystems (Derry 
et al., 2005; Falkowski et al., 2004; Kidder & Gierlowski- Kordesch, 
2005). Without such biological influences on weathering, the Earth 
might be considerably warmer than today due to comparably low 
abiotic weathering rates (Schwartzman & Volk, 1989). Despite the 
profound effect of biota on the weathering process, surprisingly lit-
tle attention has been paid to their role in optimizing ESW efficiency, 
and to their role in ESW in general.

Below, we first discuss the potential effects of plants, microbes, 
and macro- invertebrates on ESW, which can in part be derived from 
the knowledge on natural (geological) weathering. In the following 
section, we evaluate the expected responses of biota to the imple-
mentation of ESW. Then, we discuss how ESW may interact with 
SOC stocks, and GHG emissions in general, and lastly, we provide a 
way forward in addressing the most important questions that arise.

2.1  |  Plants

Plant roots can create physicochemical conditions that accelerate 
the dissolution of silicate minerals (Burghelea et al., 2015; Drever, 
1994; Hinsinger, 1998; Hinsinger et al., 2001). They also improve 
soil structure and hydrology (Angers & Caron, 1998), possibly 
stimulating weathering rates. A recent microplot study found up 
to 10- fold higher inorganic C sequestration in planted compared 
to unplanted soils amended with silicates (Haque et al., 2020b). 
Roots take up elements such as Si, Mg, Ca, and Fe that are released 
during weathering, and thereby avoid pore water saturation with 
reaction products to slow down weathering rates (Harley & Gilkes, 
2000; Hinsinger, 1998). Note that this plant uptake can also affect 
the estimation of weathering rates based on soil concentrations of 
these elements (and not on inorganic C pools and fluxes). By re-
leasing protons and CO2, roots reduce soil pH and increase the CO2 
concentration in the rhizosphere (Lenzewski et al., 2018), both of 
which stimulate mineral weathering (Harley & Gilkes, 2000). Plant 
roots also exude organic compounds such as malate or citrate that 
can for example protect the plant from Al intoxication (Ryan et al., 

F I G U R E  2  Overview of the biota/silicate- weathering interactions and their influence on the greenhouse gas (GHG) removal potential of 
enhanced silicate weathering (ESW). Blue arrows show major GHG fluxes that can be positively or negatively influenced directly or indirectly 
by ESW. GHG removal through ESW includes not only inorganic C sequestration through the weathering reaction, but also covers the effect 
of silicate addition on soil organic C sequestration and soil GHG emissions
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2001), while also stimulating mineral weathering by chelating re-
action products and dissolving silicate minerals (Dontsova et al., 
2020; Drever, 1994; Zhang & Bloom, 1999). Moreover, organic 
acids can dissolve silicate minerals at near- neutral pH, where abi-
otic dissolution rates are limited (Harley & Gilkes, 2000). The latter 
compounds may be particularly relevant for ESW applications in 
soils that are not acidic.

Plant effects on ESW are expected to differ among species, and 
this is likely (in part) related to nutrient acquisition strategy. Haque, 
Santos, et al. (2019), for example, reported that in soils treated with 
wollastonite, weathering rates were higher with leguminous beans 
than with non- leguminous corn or for bare soil without plants. Most 
leguminous plants such as beans and soybean live in symbiosis with 
nitrogen- fixing bacteria and the H+ excreted during N2 fixation by 
legumes acidifies the soil. This acidification is more pronounced for 
temperate than for tropical legumes (Bolan et al., 1991), which may 
lead to differences in their effect on ESW between climatic regions. 
Moreover, exudation of proteins, phenols, sugars, and free amino 
acids may even differ among genotypes, as has been reported for 
soybean (Krishnapriya & Pandey, 2016) and maize (Gaume et al., 
2001). This may open possibilities for the engineering of plant- soil 
combinations optimized for climate change mitigation through ESW.

2.2  |  Microbes

About 90% of land plant species live in symbiosis with mycorrhizal 
fungi (Brundrett & Tedersoo, 2018). Mycorrhizal fungi are thought 
to have significantly increased mineral dissolution rates at evolution-
ary timescales and experiments have shown that they indeed stimu-
late rock weathering (Bonneville et al., 2011; Burghelea et al., 2015, 
2018; Zaharescu et al., 2020). Given that mycorrhizal fungi depend 
on their host for C, their influence on ESW is likely to be strongly 
related to plant activity and plant C allocation. Depending on soil 
conditions, plants can allocate substantial amounts of C to mycor-
rhizal fungi (Ven et al., 2020), and thereby stimulate their weathering 
activity, increasing the release of P and other mineral elements from 
the silicate minerals (Verbruggen et al., 2021).

Other fungi can also accelerate weathering; mineral dissolution 
rates can be 10 times higher underneath individual fungal filaments 
compared to areas where fungi are absent (Wild et al., 2021). Fungi 
accelerate weathering by exuding protons, organic acids, chelators, 
and by creating gradients through channeling elements away from 
mineral surfaces (Van Hees et al., 2006). As for plants, fungi and 
other microbes can also stimulate weathering by acting as a sink 
for weathering products (Oelkers et al., 2015). Fungal hyphae are 
very thin and can, therefore, interact with surfaces more tightly than 
plant roots can (Howard et al., 1991; Wild et al., 2021). Moreover, 
specific genetic pathways that stimulate the conversion of CO2 into 
carbonates, and thus accelerate weathering, can be upregulated in 
response to exposure to minerals (Xiao et al., 2012). This suggests 
specific fungal adaptations toward the dissolution of minerals. The 
effect of fungi on ESW will likely depend on fungal species and on 

the extent to which elements contained in the applied silicates (e.g., 
Mg, Ca, Fe, and K) are limiting their growth.

Also, other microorganisms such as bacteria can stimulate weath-
ering of rocks and minerals (Gouda et al., 2018). One of the key pro-
cesses underlying microbially enhanced weathering is the lowering 
of pH by releasing acids, such as low molecular mass organic acids 
and dissolved CO2. Some bacteria can lower pH to values as low as 
2.3 (Ahmed & Holmström, 2014). Basak and Biswas (2009) found 
that Bacillus mucilaginosus significantly enhanced the K release of 
muscovite mica, which is among the most weathering- resistant sili-
cate minerals (Palandri & Kharaka, 2004). In addition, both bacteria 
and fungi can produce chelates and enzymes that can enhance min-
eral dissolution rates up to 100 times (Buss et al., 2007; Sun et al., 
2013; Xiao et al., 2015). Chelates like siderophores are usually spe-
cific to a single element, and their production depends on the type of 
geological material and soil fertility, again emphasizing high variation 
among microbial taxa and dependence on environmental context.

2.3  |  Soil enzymes

The enzymes and proteins that play an important role in weathering 
of silicates are often excreted by microbes experiencing a nutritional 
deficiency. The extracellular excretions are biologically activated 
both by nutrient limitation and the proximity to the nutrient- carrying 
mineral (Xiao et al., 2015; Zaharescu et al., 2020). Some enzymes, 
such as carbonic anhydrases (CA) which are found within all domains 
of life and play a fundamental role in respiration, CO2 transport, and 
photosynthesis, have a combined effect of both increasing silicate 
weathering and carbonate precipitation. A few studies have been 
able to show increased weathering of silicates and carbonates with 
added CA (Xiao et al., 2015; Zaihua, 2001). CA catalyzes the equilib-
rium reaction between CO2 and bicarbonate ions, which in contact 
with the free metal ions from weathering of silicates, combine to 
form solid carbonate precipitates such as calcite (CaCO3), magnesite 
(MgCO3), dolomite (CaMg(CO3)2), or siderite (FeCO3). The abiotic 
process of carbonate precipitation is slow and requires pH values 
higher than 8, whereas the addition of CA accelerates this reaction 
considerably (Bose & Satyanarayana, 2017). In fact, CA is one of the 
fastest enzymes, performing up to 106 CO2 conversion reactions per 
second. CA is most efficient at high pH and may thus be especially 
important for ESW in alkaline soils.

Recently, there has been an increased interest in using CA in the 
industrial and agricultural sector for C sequestration and enhanced 
crop growth. Industrial slag waste from the steel industry is regularly 
used as a soil fertilizer due to its composition of bio- essential nutri-
ents such as phosphates, silicates, and trace elements, which can 
increase crop productivity (Reddy et al., 2019; Wang, Zeng, et al., 
2018). Das, Kim, et al. (2019) suggested that the use of CA- containing 
bacteria in slag- fertilized soils could accelerate the weathering of the 
silicate- containing slags and hence C sequestration.

An enhanced microbial expression of CA genes will promote 
the generation of H2CO3 and a concomitant increase of silicate 
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weathering and a release of the bio- necessary nutrients. Some or-
ganisms adapt to increasing CO2 levels by downregulating the gene 
expression of CA (Xiao et al., 2015). Experiments with fungi have 
shown that one way to keep an upregulated CA expression despite 
high CO2 concentrations is to limit K availability and add K- feldspar 
as the only available source of K (Sun et al., 2013; Xiao et al., 2012). 
This can be seen also in environments with Ca deficiency, where sil-
icates are the only available source for Ca (Xiao et al., 2015). High 
concentrations of Zn and Fe, on the contrary, stimulate CA activity, 
while the complex binding of Zn is a strong inhibitor of zinc metallo-
enzymes such as CA (Borja et al., 1998).

Urease is another enzyme used by prokaryotes and eukaryotes 
for efficient biomineralization. Urease is a nickel metalloenzyme that 
catalyzes the conversion of urea to ammonia with the side effects of 
raising pH, which in turn stimulates carbonate precipitation. As with 
CA, urease increases pH locally and is inhibited by low pH. Moghal 
et al. (2020) tested the retention of heavy metals in soils by induc-
ing carbonate precipitation using urease. They found that urease 
efficiently precipitated carbonates which had the coupled effect of 
also decreasing heavy metal concentrations in the soils. Enhanced 
weathering of ultramafic silicate minerals such as olivine can release 
heavy metals such as Ni and Cr, but with the addition of urease, the 
toxic effect of those metals may be diminished. In other words, ure-
ase may not only increase weathering rates, but may also help in 
overcoming potential heavy metal contamination upon the addition 
of some silicate materials. This would be particularly interesting to 
further investigate for fast- weathering minerals such as olivine that 
contain high amounts of Ni and Cr.

In contrast, high urease activity can be undesirable in agriculture. 
Urea ammonium nitrate (UAN) is a commonly used fertilizer. When 
added to soil, UAN is quickly converted to ammonia and volatilized 
to the atmosphere (Wang, Köbke, et al., 2020), leading to fertilizer 
losses and increasing emissions of the potent GHG N2O. There is, 
thus, a great need for more efficient use of N in fertilizers and since 
urease is the main enzyme responsible for the conversion of urea to 
NH3, urease inhibitors have effectively been used for lowering the 
volatilization of urea and increasing crop yield (Drury et al., 2017; 
Mira et al., 2017; Wang, Köbke, et al., 2020). Humic acids are among 
the more efficient inhibitors of urease. Humic acids irreversibly in-
hibit the hydrolytic decomposition of urea (Liu et al., 2019) and con-
comitantly reduce urease- induced carbonate precipitation. On the 
contrary, the natural concentration of humic acids in soils is likely 
too low to have a profound impact on the precipitation capacity of 
urease (Al- Taweel & Abo- Tabikh, 2019; Moghal et al., 2020).

While urease can stimulate silicate weathering through car-
bonate biomineralization, agricultural practices aimed at reducing 
urease activity can limit this effect. An alternative pathway that 
would reconcile the interest in C sequestration and reduction of N 
losses is to inhibit the total conversion of urea to gas by increasing 
the efficiency by which plants and/or microorganisms make use of 
the added urea fertilizer. Interestingly, the addition of Ni— the ure-
ase co- factor present in several silicate materials— may aid in this 
regard. Laboratory studies have shown that supplementation of Ni 

to the soil increased the health and growth rate of lettuce plants 
(Khoshgoftarmanesh et al., 2011; Oliveira et al., 2013). Adding sil-
icate materials containing Ni may thus stimulate biomineralization 
of CaCO3 by urease, and hence C sequestration (Bachmeier et al., 
2002), while at the same time stimulating plant growth and reduc-
ing urea volatilization. It is, however, not yet fully understood how 
the net fertilizer efficiency and gas- exchange rate will develop on a 
larger timescale (Tosi et al., 2020) and more research is needed to 
investigate the effects of combined urease and silicate addition on 
GHG emissions and plant growth.

2.4  |  Macro- invertebrates

Earthworms are important ecosystem engineers (Blouin et al., 2013). 
It is long known that through their burrowing and feeding, earth-
worms strongly affect soil physicochemical as well as biological pa-
rameters. Through ingestion of fresh residue and soil particles, they 
can increase mineralization and mineral dissolution, leading to large 
local increases in nutrient availability (Van Groenigen et al., 2019). 
Recent research has also shown that the availability of nutrients 
such as P can greatly increase during earthworm gut passage due 
to competitive desorption reactions with dissolved organic C (Ros 
et al., 2017). To test the effects of earthworms on mineral disso-
lution, de Souza et al. (2013, 2018) added gneiss and steatite rock 
powder to vermicompost containing the earthworm species Eisenia 
andrei. They found that earthworms increased rock weathering and 
nutrient release, indicated by higher maize yields, albeit only statisti-
cally significantly for steatite (de Souza et al., 2013).

Interestingly, several common earthworm species sequester 
significant amounts of inorganic C by producing calcium carbonate 
in their specialized calciferous glands (Briones et al., 2008; Darwin, 
1892; Lambkin et al., 2011; Versteegh et al., 2014). Although the 
purpose of these glands remains a topic of debate, they may con-
tribute to increasing weathering rates and C sequestration. The 
worm digestive system can also promote mineral weathering by in-
oculating mineral surfaces with microbes and stimulating microbial 
activity, albeit dependent on the minerals that are used (Carpenter 
et al., 2007; Liu et al., 2011). Hu et al. (2018) isolated various silicate 
dissolving bacteria from the gut of earthworms and found that they 
increased quartz and feldspar weathering. Furthermore, inoculating 
potting soils with the isolated bacteria significantly increased solu-
ble Si contents, and thereby enhanced Si uptake and growth of maize 
seedlings. Last, the positive effects of earthworms on soil structure 
and drainage (Blouin et al., 2013) can potentially help to distribute 
silicate grains to deeper soil layers and accelerate the infiltration of 
water in soils, decreasing the risk for saturation of soil pore water 
with reaction products.

Ants too might enhance weathering rates (Dorn, 2014). They 
are abundant in most terrestrial ecosystems, where they influence 
biogeochemical cycling and mineral weathering (Viles et al., 2021). 
Ants alter soils in various ways, including effects on soil pH, water 
infiltration, organic matter accumulation, and mineral weathering. 
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Several ant species produce organic acids such as formic acid, which 
can stimulate rock weathering (Viles et al., 2021). In a 25- year- long 
experiment, Dorn (2014) placed grains of plagioclase and olivine in 
ant nests and estimated dissolution rates that were 60 to 330 times 
higher than in the control plots. On the one hand, ants may thus 
be potentially powerful biotic weathering agents, while on the other 
hand, their area of influence is likely diminishing with distance from 
the nest. More research is still needed on the role that ants play in 
natural and enhanced rock weathering, to unravel the mechanisms 
involved, including interactions with other biota, and to quantify 
their potential effect on ESW.

3  |  IMPAC T OF ESW ON BIOTA

If biota are important in steering weathering rates, their response 
to silicate addition will be critical for the climate change mitigation 
effect of ESW. Biotic responses to silicate addition will co- determine 
their influence on the weathering rates (Figure 2). Moreover, side 
effects on biodiversity associated with changes in the trophic status 
of ecosystems induced by ESW could occur and both positive and 
negative effects on plants and soil biota may have environmental, 
economic, and/or health consequences. These will influence the de-
sirability and societal acceptance of ESW and will thus co- determine 
the feasibility of ESW in agriculture and in more natural settings.

3.1  |  Plants

Many silicates that can be used for ESW contain mineral nutrients 
that plants need to grow, including P, Mg, Ca, K, Fe, Zn, and Si. As 
a result, ESW can stimulate plant growth and increase crop yield 
(Battles et al., 2014; Haque, Chiang, et al., 2019; Kelland et al., 2020; 
Swoboda et al., 2021; Taylor et al., 2021; Van Straaten, 2006), al-
though this is not always the case (Haque et al., 2020b; Swoboda 
et al., 2021; Wang, Wang, et al., 2018). Of particular importance 

might be the widely neglected supply of Si, which is considered a 
beneficial rather than an essential nutrient, although there is wide 
agreement and accumulating evidence that Si can induce a broad 
range of plant biotic and abiotic stress resistances (Epstein, 1999; 
Guntzer et al., 2012; Haynes, 2014). Besides improved plant growth, 
ESW has been suggested to increase crop resistance to pests and 
drought, mainly due to increased Si uptake (Guntzer et al., 2012; 
Van Bockhaven et al., 2013). Furthermore, 7 of the 10 most impor-
tant crops are considered to be Si- accumulators (FAOSTAT, 2018; 
Figure 3), and yield increases in response to Si fertilization have been 
frequently demonstrated, for example for wheat, rice, and sugarcane 
(Korndörfer & Lepsch, 2001; Liang et al., 2015; Neu et al., 2017). 
The latter two tropical crops are typically grown on highly weath-
ered and desilicated soils, with Si concentrations usually 5– 10 times 
lower than that for temperate soils. The demand for Si in agriculture 
is therefore expected to increase in the future (Haynes, 2014).

A positive effect of silicate addition on plant growth and defense 
can create a positive feedback with ESW, especially if root produc-
tion and belowground inputs increase. Moreover, positive growth 
responses can increase C sequestration in plant biomass if silicates 
are applied in (semi- )natural ecosystems where biomass can accumu-
late (Goll et al., 2021). On the contrary, it might be concerning that 
ESW is accompanied by the release of heavy metals like Ni and Cr 
(Beerling et al., 2018; Haque, Chiang, et al., 2020; Hartmann et al., 
2013). Nonetheless, the application of Ni is not necessarily prob-
lematic and below a certain threshold, Ni may even be beneficial for 
plants (Ahmad et al., 2011; Kumar et al., 2018). In one experiment, 
barley growth and yield increased with Ni additions of up to 10 mg 
Ni kg−1 soil (Kumar et al., 2018). When the concentration of Ni ex-
ceeded those thresholds, growth, and yield declined, while the up-
take of Ni continued to increase with increasing Ni application to 
soil. This suggests that Ni accumulation in the food chain is propor-
tional to the Ni addition. The application rate and choice of silicate 
minerals can be adjusted to control the heavy metal release (Haque, 
Chiang, et al., 2020). In addition, phytoremediation may in some 
cases pose a way to mitigate the concentration of contaminants 

F I G U R E  3  Top 10 produced crops 
in the world in 2018 (FAOSTAT, 2018). 
Seven of these crops are classified as Si 
accumulators (>1.0% Si of dry weight 
[DW]). The values above the bar are 
average shoot Si concentrations acompiled 
from Hodson et al. (2005); baverages 
compiled from Munevar and Romero 
(2015); cestimated averages of the data 
(Solanaceae) compiled by Hodson et al. 
(2005); destimated averages of the data 
(Euphorbiaceae) compiled by Hodson et al. 
(2005); eaverages computed from the data 
of Draycott (2008)
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such as Ni in soil. As for urease, the potential of phytoremediation to 
reduce heavy metal availability following, for example, olivine appli-
cation requires further investigation.

3.2  |  Microbes

Large shifts in soil microbial communities have been associated with 
the addition of silicates (Carson et al., 2007; Das, Gwon, et al., 2019; 
Zhou et al., 2018). For example, Zhou et al. (2018) observed changes 
in bacterial and fungal community composition and reported a de-
crease in the abundance of microbial plant pathogens with silicate 
addition, likely related to improved crop defense. Soil pH is one of 
the main determinants of microbial community composition (Fierer, 
2017), and pH changes following silicate addition will thus directly 
influence which microbial taxa flourish (Das, Gwon, et al., 2019; 
Fierer, 2017).

Silicate rock powder addition had contrasting effects on soil mi-
crobes in three Austrian forest soils with varying pH (Mersi et al., 
1992). The rock powder additions increased the pH of all soils, but 
the most significant effects on microbial processes were found for 
a Calcaric Regosol and Cambisol (pH 5.8), where the rock powder 
additions increased nitrification, microbial biomass and respiration, 
xylanase, and protease activity. Intermediate effects were found for 
a Stagno- Mollic Gleysol (pH 3.8), where protease activity increased 
but phosphatase activity decreased, whereas no effects were found 
on a highly acidic Stagno- Dystric Gleysol (pH 2.8). An increase in 
xylanase, phosphatase, and protease activity— essential enzymes 
for the breakdown of organic matter— could increase soil CO2 emis-
sions. However, even though rock powder additions increased the 
protease content of both the Stagno- Mollic Gleysol and the Calcaric 
Regosol and Cambisol, CO2 emissions and microbial biomass only 
increased for the Regosol and Cambisol. The rock powders also 
increased the nitrification and nitrate contents of the Regosol and 
Cambisol, which could increase N2O emissions. Simultaneous N2O 
reductions might, however, be achieved through the reduction of 
soil acidity, as discussed in detail below. These findings illustrate that 
the effect of ESW on microbial communities depends on soil proper-
ties and hence also the feedback to ESW is likely to vary depending 
on environmental conditions.

In general, we can expect shifts toward microbial taxa that are 
better able to occupy new niches on mineral surfaces or those that 
profit from the released nutrients (Barker et al., 1998; Gleeson et al., 
2006; Reith et al., 2015). Also, the tolerance to toxic trace elements 
such as Ni or Cu, which can negatively impact microbes (Silva et al., 
2012), can play a role. The various interactions between microbes 
and added silicate minerals can be expected to lead to a dynamic 
equilibrium between microbial community composition and mineral 
weathering. This may impact various soil processes relevant for soil 
C sequestration and GHG emissions, as illustrated by the observed 
increases in the abundance of functional genes involved in the deg-
radation of labile C, fixation of C and N, and CH4 oxidation (Das, 
Gwon, et al., 2019).

3.3  |  Macro- invertebrates

Few experiments have tested the effect of silicate additions on 
macro- invertebrates and to the best of our knowledge, these experi-
ments have yet been limited to earthworms and rock powders mixed 
into vermicompost and manure. Divergent responses were reported, 
with earthworm growth increasing in some cases and decreasing in 
others, depending on the rock type and amount that was applied (de 
Souza et al., 2019; Zhu et al., 2013).

We propose three main pathways through which applying sili-
cate minerals might affect earthworm functioning. First, the in-
crease in pH and basic cations upon silicate addition may positively 
affect earthworm communities, especially in highly weathered, low pH  
soils. It is well known that earthworms are absent in soils with a 
pH lower than 3.5, and very scarce at pH lower than 4.5. Optimal 
pH ranges differ per species, but are generally within the range 5.0– 
7.4 (Curry, 2004). In addition, increased availability of basic cations 
such as Ca and Mg has been shown to increase earthworm popula-
tions (Fragoso & Lavelle, 1992) and a recent study showed a clear 
increase in the earthworm biomass after prolonged liming of forest 
soil (Persson et al., 2021).

Second, there may be physical interactions between earthworms 
and added minerals. It has only recently been established that the 
thickness of the body wall of earthworms varies between species 
and may affect their functioning in the soil (Briones & Álvarez- 
Otero, 2018). Although this is so far mostly related to susceptibil-
ity to desiccation and burrowing behavior, earthworms with thicker 
body walls might be a better fit to function in systems where sharp 
mineral particles are added. This and the possibility of mechanical 
damage upon ingestion remain to be investigated.

Finally, as with plants and microorganisms, the release of toxic 
trace elements might be detrimental to earthworms. Earthworms 
can be affected by increased concentrations of, for example, Cu and 
Ni, especially under conditions of low pH when more cations are de-
sorbed (Ma, 1988; Wang, Xia, et al., 2020), although in general they 
are fairly tolerant to most heavy metals (Ireland, 1983). Accordingly, 
de Souza et al. (2019) found that the high concentrations of Ni and 
Cr released during the dissolution of steatite did not hinder earth-
worm growth.

4  |  IMPAC T OF ESW ON SOC STOR AGE

In order to forecast the net effect of silicate addition on the C bal-
ance of an ecosystem, the impact of ESW on the largest pool of 
ecosystem C, that is, SOC must be taken into account. Here too, we 
expect biota/silicate- weathering interactions to play a critical role. 
Empirical data on the effects of silicate addition are still scarce, 
but Anda et al. (2013) applied basalt powder to an oxisol and 
observed significantly increased cacao plant growth and higher 
SOC stocks. Moreover, mineral weathering has previously been 
identified as the main driver of SOC sequestration across a natu-
ral weathering chronosequence (Doetterl et al., 2018). Doetterl 
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et al. (2018) showed that primary mineral weathering was associ-
ated with increases in nutrient availability and higher potential of 
soils to stabilize carbon. Hence, similar to liming and fertilization, 
silicate addition can be expected to impact SOC sequestration 
by affecting the quantity of plant belowground C inputs, as well 
as the stabilization of these inputs in soil organic matter (SOM; 
Paradelo et al., 2015; Van Sundert et al., 2020). Depending on soil 
heterogeneity and the magnitude of the effect, it may take several 
years though before such changes in SOC stocks are detectable 
(Paradelo et al., 2015).

Plant belowground C inputs depend on plant productivity and C 
allocation patterns. Plants allocate substantial amounts of C below-
ground in the form of roots and exudates and through symbiosis with 
mycorrhizal fungi (Ven et al., 2019; Verlinden et al., 2018). Nutrient 
availability is a key driver of plant C allocation and plant C inputs to 
the soil are likely to be affected by silicate addition, although the 
magnitude and direction of the effect is expected to depend on en-
vironmental conditions (Litton et al., 2007; Poorter et al., 2012; Ven 
et al., 2020; Vicca et al., 2012). Especially soil nutrient status and 
plant growth responses to the silicate additions are expected to be 
important in this regard.

Stable SOM can be formed via two major pathways: Turnover of 
new C inputs and modification of organic matter present in the soil. 
Turnover of new C depends strongly on the recalcitrance of litter 
and rhizodeposits. Although decomposition of recalcitrant litter is 
slower than that of labile litter, cumulative C losses during decom-
position of recalcitrant litter are generally higher than C losses from 
more labile inputs (Cotrufo et al., 2013). This is because a larger 
fraction of the labile C can be converted into microbial biomass and 
microbial products. The close association between microbes and soil 
mineral surfaces then explains the greater stabilization of labile C 
inputs than of recalcitrant C inputs (Cotrufo et al., 2013). As with 
liming, silicate addition may increase plant C inputs and/or its nutri-
ent concentrations (Forey et al., 2015; Melvin et al., 2013; Paradelo 
et al., 2015) and hence increase SOM stabilization.

Liming and silicate addition can affect SOM formation and decay 
via the altered activity of extracellular enzymes, driven by the mod-
ified soil pH (Sinsabaugh et al., 2008). Many C-  and N- acquiring en-
zymes increase in potential activity after the application of lime to 
acid soils (Acosta- Martínez & Tabatabai, 2000). Increased pH upon 
silicate addition can thus accelerate the decomposition of plant litter 
and SOM (Leifeld et al., 2013), resulting in reduced litter and SOC 
stocks, but the improved living conditions are likely to result in en-
hanced microbial growth and thus also increase the formation of 
stabilized SOM.

The aggregate formation is also a key SOM stabilization mech-
anism that can be increased by the presence of secondary minerals 
formed during mineral weathering (Doetterl et al., 2018) and is in-
fluenced also by soil organisms (Lehmann et al., 2017; Thomas et al., 
2020). Given that aggregates are hotspots of biological activity and 
biogeochemical processes (Or et al., 2021), weathering rates may be 
higher inside aggregates than in the surrounding soil. On the con-
trary, reduced water flow may lead to saturation of the water inside 

the aggregates, reducing weathering rates. The release of Ca from 
basalt can stimulate aggregation through enhanced flocculation 
of clay minerals, an effect possibly enhanced by earthworm activ-
ity (Shipitalo & Protz, 1989), and the formation of complexes be-
tween Ca and high- molecular- weight organic compounds (Baldock 
& Skjemstad, 2000; Rowley et al., 2018). Furthermore, carbonate 
minerals are known to improve soil structure and can act as cement-
ing agents in the occlusion of SOM, although uncertainty exists on 
the importance of this mechanism for field SOC stocks (Fernández- 
Ugalde et al., 2014; Rowley et al., 2021).

Besides litter recalcitrance, enzyme activities, and aggregate for-
mation, interactions between silicate minerals and SOM can impact 
SOC sequestration. Ca released during weathering impacts organo- 
mineral association via the mediation of complexation processes 
(Rowley et al., 2021) and during the weathering of some silicates 
such as basalt, substantial amounts of Fe-  and Al- oxi- hydroxides are 
formed. The latter has a strong SOM stabilization potential and the 
presence of such reactive minerals can increase SOC sequestration 
(Abramoff et al., 2021; Cotrufo et al., 2013; Or et al., 2021).

Finally, changes in SOM decomposition, for example, due to al-
tered litter quality or aggregate formation, may also impact weath-
ering rates, creating a feedback loop. For example, faster turnover 
of higher quality litter can increase the soil CO2 concentration, 
impacting mineral dissolution. At the same time, increased litter 
turnover enhances the dissolution of organic matter (Cotrufo et al., 
2013), and thus increases the potential of organic compounds to ei-
ther form stable organo- mineral complexes or aid in the weathering. 
Overall, the balance between the effects on plant C inputs, litter 
decomposition, and SOM stabilization will determine the net effect 
of silicate addition on SOC sequestration. In the case of liming, a 
literature review by Paradelo et al. (2015) showed that SOC stocks 
generally increased with liming in mineral soils. In organic soils and 
(acid) organic soil horizons, increased mineralization rates upon lim-
ing appear more likely to reduce SOC stocks (Lundström et al., 2003; 
Paradelo et al., 2015).

In determining the net effect of ESW on soil C budgets, it is im-
portant to consider both inorganic and organic C sequestration and 
the interactions among the different processes involved. In doing 
so, the various timescales at which sequestration mechanisms are 
active need to be considered. Mean residence times of soil organic 
and inorganic C differ by orders of magnitude, and the persistence 
of SOC varies widely depending on the location and form of SOC 
(Schmidt et al., 2011; Zamanian et al., 2016). Moreover, biological 
responses to silicate weathering might reach saturation on shorter 
timescales, depending on silicate applications and environmental 
conditions (Goll et al., 2021). This calls for a better understanding 
of the extent to which amplifying and dampening biotic responses 
saturate, as well as the respective timescales. A combination of tar-
geted field experiments and theoretical modeling is required to span 
the large range of timescales from responses of microbes to SOM 
stabilization. Soil development chronosequences could provide in-
formation on the long- term impact of ESW (Doetterl et al., 2018) 
as ESW- focused studies are still scarce and (yet) of short duration.
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5  |  ESW EFFEC TS ON OTHER GHG 
EMISSIONS

Silicate addition has been suggested to affect soil emissions of 
GHGs other than CO2, especially N2O (Figure 1; Beerling et al., 
2018). Total annual N2O emissions from soils in natural and agri-
cultural systems together represent about 55% of all global N2O 
sources (Tian et al., 2020). Agricultural soils are a major source of 
N2O to the atmosphere due to the high amount of mineral fertiliz-
ers that increase microbial N availability (Guenet et al., 2021). Soil 
moisture is a key determinant of soil N2O emissions (Firestone & 
Davidson, 1989) and changes in soil hydrology following silicate 
addition can thus influence N2O emissions (among others depend-
ing on soil texture and size of the silicate grains). Also soil pH in-
fluences N2O emissions; low pH decreases the activity of N2O 
reductase, stimulating the release of N2O as an intermediate prod-
uct of the denitrification process (Hu et al., 2015; Liu et al., 2010). 
Silicate addition to acid soils is expected to buffer pH and thus 
reduce N2O emissions by increasing the N2:N2O ratio (i.e., enhanc-
ing complete denitrification; Blanc- Betes et al., 2021), similar to 
what has been reported for liming (Hénault et al., 2019). In aerobic 
soils, however, reduced N2O release from denitrification may be 
counterbalanced by increased N2O release during nitrification, as 
pH increases stimulate nitrification and favor ammonia- oxidizing 
bacteria over ammonia- oxidizing archaea, with the former produc-
ing more N2O (Nadeem et al., 2020).

Other interactions with biota arise here as well. For exam-
ple, mycorrhizal fungi have been shown to reduce N2O emis-
sions (Storer et al., 2018), potentially enhancing this anticipated 
co- benefit of ESW, whereas earthworms have been reported 
to increase N2O emissions (Augustenborg et al., 2012; Lubbers 
et al., 2013). In some soils, earthworm activity may account for 
more than 50% of the total soil N2O emissions (Augustenborg 
et al., 2012) due to the increase in substrate availability result-
ing from their activity, the anaerobic environment in their casts 
as well as their effect on macropore formation (Lubbers et al., 
2013; Nebert et al., 2011). The interactive effect of soil biota and 
silicate- weathering on N2O emissions is yet unexplored but could 
provide ways to increase the climate change mitigation effect of 
ESW. For example, growing N- fixing plants, especially temperate 
legumes, typically acidifies the soil (Bolan et al., 1991), possibly 
leading to high N2O emissions. This effect could be countered by 
an increase in pH upon silicate addition. Furthermore, potential 
improvements of soil structure through the combination of silicate 
addition and biotic activity may increase soil aeration and thus re-
duce denitrification.

Whereas N2O can be of huge importance in agricultural soils, 
methane (CH4) typically is not. CH4 production is a strictly anaer-
obic process. In aerobic soils, CH4 oxidation typically exceeds CH4 
production, making these soils modest CH4 sinks (Dutaur & Verchot, 
2007). Rice fields, however, are an important source of CH4 emis-
sions due to their waterlogged anaerobic soils (Saunois et al., 2020). 
Some studies have reported a decrease in CH4 emissions when 

adding silicates (Ali et al., 2008; Wang, Zeng, et al., 2018), while 
others reported an increase (Ku et al., 2020). Silicate addition can 
reduce CH4 emissions by reducing methanogenesis and/or increas-
ing CH4 oxidation (Das, Kim, et al., 2019). Silicates containing Fe can 
stimulate Fe- reducing bacteria at the expense of methanogens, as 
Fe is a more favorable electron acceptor than CO2 (Das, Kim, et al., 
2019; Gwon et al., 2018). On the contrary, increased plant produc-
tivity in response to silicate addition may increase CH4 emissions by 
increasing plant belowground C input quantity and quality (Ku et al., 
2020), and enlarged aerenchyma due to higher root biomass might 
further increase CH4 funneling to the atmosphere (Kim et al., 2018; 
Ku et al., 2020). Hence, the net effect of silicate addition on CH4 
emissions will depend on the balance between these counteracting 
processes.

As illustrated above, silicate addition can have diverging ef-
fects on the release of CO2, CH4, and N2O, from soils and ecosys-
tems. Reductions in the emission of one of these GHGs might be 
counteracted by increases in another. Ku et al. (2020), for example, 
reported a reduction in N2O emissions from a rice field amended 
with a calcium silicate, but CO2 and CH4 emissions increased more, 
leading to an increase in the global warming potential of the cu-
mulative GHG emissions. This illustrates the importance of con-
sidering the emissions of all three of these GHGs when assessing 
the climate change mitigation potential of ESW and its interaction 
with the biota.

6  |  ADVANCES IN MODELING ESW

Few modeling studies have yet addressed interactions between 
ESW and biota. Most studies are limited to the dissolution reac-
tions, removal of weathering products, abiotic CO2 drawdown (e.g., 
Rinder & von Hagke, 2021; Strefler et al., 2018), and impact on soil 
hydrology (de Oliveira Garcia et al., 2020). Nonetheless, first models 
are emerging which include interactions between biota and weath-
ering rates. Goll et al. (2021) used a comprehensive land surface 
model coupled to a model of mineral dissolution to simulate the ef-
fect of nutrient release from basalt on plant growth and ecosystem 
carbon storage. Cipolla et al. (2021) coupled an ESW component 
to an ecohydrological- biogeochemical soil model to investigate 
the combined contributions of hydrology and plants to weathering 
rates. Beerling et al. (2020) used a one- dimensional vertical reac-
tive transport model with the steady- state flow, and a source term 
representing rock grain dissolution which includes an empirical for-
mulation for the combined effect of biotic processes that accelerate 
the physical breakdown and chemical dissolution of minerals.

Land surface models which resolve the water, energy, and bio-
geochemical cycles in plant and soils coupled to weathering mod-
els can provide the means to study the full effect of ESW on biota 
and vice versa. The increasing realism of belowground processes in 
such models provides the basis to integrate the emerging data from 
experiments in biologically active soils, mesocosm, and field experi-
ments (e.g., Kelland et al., 2020).
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7  |  FUTURE OUTLOOK AND RESE ARCH 
NEEDS

We illustrated that the weathering rates and the GHG removal 
potential of ESW depend not only on abiotic conditions, but is po-
tentially strongly influenced by biota, which have been largely over-
looked in ESW research. The multiple soil biota/silicate- weathering 
interactions imply that the ultimate GHG removal effect of ESW will 
depend on the balance between positive and negative influences of 
silicates on biota, and their subsequent joint effects on inorganic 
and organic C and N fluxes. Further unraveling and quantifying the 
impact of biota on ESW will be critical for planning the widespread 
use of ESW as a climate change mitigation strategy. If biological pro-
cesses are indeed critical in determining GHG removal by ESW, this 
may imply that the biota- silicate interaction determines the location 
of ESW hotspots, possibly overriding current assumptions regarding 
(climate- driven) ESW hotspots in the tropics.

Taking into account biological processes will also be critical to 
anticipate synergistic effects between ESW and environmental or 
climatic changes. For example, elevated CO2 concentrations often 
increase plant growth and belowground C inputs (Terrer et al., 2021), 
which could in turn stimulate ESW and SOC sequestration. In ad-
dition, the nutrient limitation on the CO2 fertilization effect may 
be (partly) alleviated by ESW treatments (Goll et al., 2021; Terrer 
et al., 2019). Warming can be expected to increase weathering rates, 
but may also decrease SOC sequestration as a result of increased 
microbial activity and decomposition (Davidson & Janssens, 2006). 
Moreover, as droughts increase in frequency and intensity, silicate 
application may reduce some of its impacts. Si accumulation in 
plants can reduce plant water losses (Guntzer et al., 2012) and K 
release through weathering may improve plant water use efficiency 
(Battie- Laclau et al., 2016). In- depth research is needed to quan-
tify the effects of ESW on plants, soil, and GHG removal and this 
should consider interactions with nutrient cycling (Vicca et al., 2018) 
and other important environmental moderators subjected to global 
change.

Further interest in exploring the biota/silicate weathering inter-
action lies in the potential benefits for agriculture and nature resto-
ration. The potential of ESW as a NET and feasibility of widespread 
application is not only determined by its GHG removal or GHG 
emission reduction potential, but also by its potential for increasing 
crop yield and biomass production, while at the same time avoiding 
environmental and health risks. Silicate rock powders and other sil-
icate or alkaline materials (e.g., concrete fines and steel slags) are 
already being used to “rejuvenate” soils and to provide slow- release 
bioavailable nutrients. Currently, however, the positive properties 
of the slow- leaching rock powder nutrients are also the limitations 
of the material because their low solubility may render the material 
cost- inefficient as a fertilizing agent (Amann & Hartmann, 2019). By 
increasing the weathering rate with the help from biota, the draw-
down of CO2 and the soil fertilizing effects could improve, increas-
ing the potential profit to be made with ESW application. Concerns 
about the release of toxic trace elements also put a constraint on the 

application of ESW. Here, the possibility for phytoremediation and 
immobilization of heavy metals contained in some fast- weathering 
silicate minerals such as olivine could be explored to moderate these 
risks. We conclude that in order to determine the true potential of 
ESW as a NET, as well as to maximize its climate change mitigation 
effect, the biotic context must be comprehensively evaluated in lab 
and in field settings.
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