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Functions of silicon in plant drought stress
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Abstract
Silicon (Si), the second most abundant element in Earth’s crust, exerts beneficial effects on the growth and productivity
of a variety of plant species under various environmental conditions. However, the benefits of Si and its importance to
plants are controversial due to differences among the species, genotypes, and the environmental conditions.
Although Si has been widely reported to alleviate plant drought stress in both the Si-accumulating and
nonaccumulating plants, the underlying mechanisms through which Si improves plant water status and maintains
water balance remain unclear. The aim of this review is to summarize the morphoanatomical, physiological,
biochemical, and molecular processes that are involved in plant water status that are regulated by Si in response to
drought stress, especially the integrated modulation of Si-triggered drought stress responses in Si accumulators and
intermediate- and excluder-type plants. The key mechanisms influencing the ability of Si to mitigate the effects of
drought stress include enhancing water uptake and transport, regulating stomatal behavior and transpirational water
loss, accumulating solutes and osmoregulatory substances, and inducing plant defense- associated with signaling
events, consequently maintaining whole-plant water balance. This study evaluates the ability of Si to maintain water
balance under drought stress conditions and suggests future research that is needed to implement the use of Si in
agriculture. Considering the complex relationships between Si and different plant species, genotypes, and the
environment, detailed studies are needed to understand the interactions between Si and plant responses under stress
conditions.

Introduction
Silicon (Si) is the second most abundant mineral ele-

ment present in the soil, and silicon dioxide composes
approximately 50–70% of the soil mass1–4. Si has various
ecological functions, with complex roles in plant pro-
cesses and in mediating interactions with the environ-
ment and other organisms5–7. Si accumulation varies
greatly among plant species, ranging from 0.1 to 10% dry
weight. Based on the Si content in tissues, plants can be
classified as accumulator (e.g., rice, wheat, maize, and
sorghum), intermediate (e.g., cucumber, bitter gourd,
and melon), or excluder (e.g., tomato, potato, canola, and

lentil) types8,9. The differences are attributed to the dif-
ferent modes of Si uptake (active, passive, and rejec-
tive)10,11. In addition, these differences are largely due to
the abilities of the roots of various plant species to absorb
Si4, which is related to Si transporter expression and
function. Below a pH of nine, Si is generally taken up by
plant roots in the form of silicic acid [Si(OH)4], an
uncharged monomeric molecule4 that is dependent pri-
marily on a specific Si influx transporter (Lsi1) and a
specific efflux transporter (Lsi2). Another influx trans-
porter, Lsi6, regulates the unloading of Si from the xylem
to leaf tissues and further facilitates root-to-shoot trans-
location4,12,13. In addition to Si taken up by roots, Si fer-
tilizer can also be efficiently supplied to leaves to increase
plant dry matter production14–17 and is absorbed mainly
via cuticular pathways, stomata, and trichomes18. Foliar
application of Si-containing solutions is a viable alter-
native Si fertilization method to increase Si accumulation,
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especially for intermediate and Si nonaccumulator
plants15,16,19,20.
During their growth and development, plants are sub-

jected to various environmental stresses. Si has been
widely reported to enhance plant tolerance to various
abiotic and biotic stresses, such as drought, salt, freezing,
nutrient imbalance, radiation damage, metal toxicity,
pests, and pathogens5,21–26. Drought, a recurring phe-
nomenon with major impacts on both humans and nat-
ural ecosystems, is the most widespread climatic extreme
that hinders primarily crop growth and productivity27. In
this context, the alleviating effects of Si on drought stress
has been observed in a wide variety of crop plants species,
including both monocots (e.g., rice, wheat, maize, and
sorghum) and dicots (e.g., tomato, cucumber, sunflower,
soybean, cotton, mango, and canola)28–38. Interestingly, Si
has been shown to counteract the effects of drought stress
in plant species that have a weakly ability to accumulate Si
(Si excluders), such as tomato and canola. Additionally,
wheat landraces that were high Si accumulators had
higher levels of shoot Si compared to low accumulators,
but no differences in growth or stress tolerance were
observed underwater stress39. This suggests that the
effects of Si are not proportional to its accumulation in
plants and that a low amount of Si accumulation does not
equate to poor function40. The role of Si in low Si-
accumulating plants is attributed mainly to the

biochemical function of Si, while mechanical/physical
barriers induced by Si deposition in high Si-accumulating
plants are important for the stress response7,32,41. For
example, Si also was shown to induce resistance to bac-
terial wilt disease caused by Ralstonia solanacearum in Si-
nonaccumulating tomato plants, which was mediated
mainly via signaling pathways, such as those involving
ethylene (ET), jasmonic acid (JA), and/or reactive oxygen
species (ROS)42.
Although Si is not considered an essential element for

plants, it is well known to be beneficial for plant growth
and development, especially under stress conditions2,5,43.
Si stimulates seed germination in wheat, maize, lentil, and
tomato under drought stress41,44–46, the effects of which
are attributed to the increased antioxidant defense and
decreased oxidative stress induced by Si41,47. During plant
growth, Si has been found to increase plant biomass and
grain yields of several crop species under drought
stress29,35,48,49, which is attributed to increases in total
root length, surface area, and volume as well as increases
in plant height, dry matter, panicle length, and tiller
number28,48,50. Another important feature due to the
possible role of Si is reducing spikelet sterility and sub-
sequently increasing the grain yields of rice supplied with
Si28,48,50.
Given the obvious benefits of Si on drought tolerance

(Fig. 1), it may be expected that its process has been

Fig. 1 Beneficial effects of silicon (Si) on the growth and development of plants under drought stress. a Plant growth and yield production in
the absence of Si application (-Si). Seed germination, root growth, shoot growth, and crop yields are suppressed by drought without Si application.
b Plant growth and yield production in the presence of Si application (+Si). c The beneficial effects of Si under drought stress include stimulating
seed germination (1) and increasing both root (2) and shoot growth (3), thus increasing plant biomass and yield (4) under drought stress
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extensively characterized. However, the detailed
mechanisms remain unknown and appear to vary
according to genotype and environment. In this review,
the morphoanatomical, physiological, biochemical, and
molecular processes by which Si alleviates plant drought
stress, especially the potential functions of Si in the
accumulator, intermediate, and excluder plants, are
summarized. This study provides an overview of the
currently available information on Si-mediated root water
uptake, leaf water loss, and plant defense responses under
drought stress.

Si increases root water uptake under drought
stress
Improving root/shoot ratios
Increasing root water uptake by regulating the root

surface and anatomy is important for plant stress toler-
ance51. Si is essential for root development and water
uptake under drought stress conditions49,52. It was sug-
gested that Si application regulates polyamine (PA) and 1-
aminocyclopropane-1-carboxylic acid (ACC) levels under
drought stress conditions to increase root growth and the
root/shoot ratio53, thus improving root water
uptake28,32,53–56. Such Si-mediated changes in root
development also increase root endodermal silicification
and suberization54,55, therefore enhancing the capability
of water retention to overcome the effects of drought
stress. Root endodermal development involves three main
stages: Casparian band formation, deposition of suberin
lamellae, and thickening of cell walls. Si has been shown
to promote Casparian band development by crosslinking
phenols with the cell wall or by inducing precipitation of
phenols56. Endodermal silicification associated with cell
walls in the roots is arranged in a specific pattern that
initiates in endodermal cells adjacent to the phloem,
continues to the xylem poles, and is ultimately observed in
so-called passage cells57. However, in a study of sorghum,
endodermal silicification-induced drought resistance was
not driven through an improved root water retention
capability, and root silicification might help overcome
drought stress by decreasing root growth inhibition
caused by desiccation58.
In contrast, several researchers have reported no effects

of Si on the root/shoot ratio but have reported increases
in both the root and shoot dry weight under stress con-
ditions32,52,59, and these authors suggested that Si was
effective at improving plant resistance to osmotic stress
and that root hydraulic conductance is important for Si-
promoted root water uptake31. Thus, Si-enhanced water
uptake under drought stress conditions could be specific
to plant species, genotype, or even environmental condi-
tions. In the following section, the functions of Si in water
uptake and transport are discussed.

Promoting the root osmotic driving force
Osmotic adjustment and accumulation of compatible

cellular solutes are considered plant physiological pro-
cesses that occur in response to drought stress60,61. These
adjustments are attributed mainly to turgor maintenance
and the protection of specific cellular functions by the
accumulation of compatible organic solutes such as
amino acids, soluble sugars, and minerals62,63, resulting in
a favorable osmotic gradient between the plant roots and
the growth medium to facilitate water uptake51,64,65.
An increasing number of studies have indicated that

applying Si promotes osmolyte accumulation in many
plant species, especially Si accumulators, such as rice,
wheat, maize, and sorghum, under drought stress28–30,66,
thus improving the osmotic driving force for water
uptake66. In line with this point, Si has been reported to
regulate the activities of enzymes involved in carbohy-
drate metabolism and affect the lignification of cell walls,
consequently regulating assimilate synthesis and transport
efficiency28–30,38,66–68. Other osmotic responses are
exhibited by cucumber and wheat plants, which show
increased protein content when exposed to salt and
drought stress together with Si29,69, and also in chickpea
and sunflower plants, in which proline accumulation is
induced by Si under drought stress34,70. The accumulation
of these osmolytes involves not only osmotic adjustment
but also detoxification of ROS, maintenance of membrane
integrity, and stabilization of proteins/enzymes, which
contribute to drought tolerance. However, another study
in tomato (a Si excluder) showed that osmotic events were
not affected by Si under drought32, suggesting that the Si-
mediated increase in root water uptake was not due to an
increase in the osmotic driving force under drought stress
but rather was due to an improved root hydraulic con-
ductance. In addition, Si application alleviated drought
stress by decreasing the content of osmolytes in lentil and
potato plant species (Si excluders)46,67, suggesting that the
role of the osmotic driving force in Si-mediated
improvement of water uptake differs between the Si
accumulators and excluders. Therefore, the osmotic
driving force was not the only important response, and
the role of the osmotic driving force in the Si-mediated
enhancement of water uptake does not appear to be
deployed in all situations.
The abovementioned studies implied that Si applica-

tion increased plant drought tolerance by regulating
osmotic adjustments based on organic solute accumu-
lation. However, since little is known about the
mechanisms of Si-mediated osmotic adjustment in
plants, the relationship between the Si application and
plant-compatible solute metabolism needs future
investigation, especially the difference between the Si
accumulators and excluders.
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Increasing root hydraulic conductance
The root water uptake capacity is largely determined by

hydraulic conductance71, and Si application has been
reported to improve root hydraulic conductance in Si
accumulators, intermediates, and excluders plants under-
water and salt stress31,32,59,66,72–75. Root hydraulic con-
ductance can be inhibited by high exogenous hydrogen
peroxide (H2O2) levels, which are correlated with mem-
brane electrolyte leakage and ROS levels76. H2O2 is involved
in the formation of suberin lamellae, which form a hydro-
phobic barrier in the endodermis and exodermis of roots77.
Under stress conditions, Si application reduces H2O2 pro-
duction and suberin lamella formation and further induces
increased water permeability32. In tomato plants under
drought stress, root plasma membrane integrity was
improved in response to Si application, and negative cor-
relations were found between root hydraulic conductance
and the levels of both the ROS and lipid peroxidation
products32. The Si-mediated alleviation of ROS production
under drought stress corresponded with an increase in
antioxidant defenses, mainly attributed to the improved
activity of catalase (CAT) and superoxide dismutase (SOD),
as well as contents of ascorbic acid (AsA) and reduced
glutathione (GSH)32. Therefore, the enhanced root
hydraulic conductance and water uptake in response to Si
could arise from a reduction in membrane oxidative
damage32. In addition, Si-mediated transcriptional upregu-
lation of root aquaporin genes contributed to increased
hydraulic conductance and water uptake under drought
stress31. It has been reported that oxidative damage causes
plasma membrane dysfunction; thus, the overproduction of
ROS under drought stress may negatively regulate the
activities of plasma membrane aquaporins32. The role of
aquaporins in root water uptake regulated by Si under
drought stress is discussed in the following sections.
Overall, the modification of root growth and hydraulic

conductance in response to Si application enhances root
water uptake under drought stress conditions. A Si-
mediated reduction in membrane oxidative damage via
increased antioxidant defense may contribute to enhanced
root hydraulic conductance. Further studies are needed to
investigate how Si regulates root development under
drought stress conditions. Specifically, the complex inter-
actions between membrane oxidative damage and ROS
accumulation in root hydraulic conductance need to be
determined.

Regulation of aquaporins (AQPs)
Aquaporins belong to the major intrinsic protein

(MIP) family and regulate the transport of water and
small solutes across membranes78–82, contributing to
root water uptake, especially under drought stress
conditions31,71,83,84. Water moves within the roots both
radially from the root surface into xylem vessels and

axially along the xylem85, while aquaporins mainly
function in radial water movement in both the water
uptake and transport. There are three main pathways
for water flow in radial movement: the apoplastic,
symplastic, and transcellular pathways85. The symplas-
tic and transcellular pathways are collectively referred
to as the cell-to-cell pathway86, which is mainly
dependent on aquaporins87.
In the presence of Si, there is a dual role played by

aquaporins under drought stress. On the one hand, Lsi1, a
Si-permeable channel, belongs to a NOD26-like intrinsic
protein (NIP) subfamily of aquaporins, which are involved
in Si transport12,88,89. As Si accumulation in plants
requires the dual action of both the influx and efflux
transporters, the Si transporter Lsi1 has evolved a unique
selective amino acid filter, which is one of the required
features to regulate the influx of Si and the indispensable
key for plants to absorb Si12,90. On the other hand, Si
induces the expression of aquaporin genes to increase
root water uptake73,91; for example, in sorghum plants, Si
application markedly enhances aquaporin activity via the
upregulation of the SbPIP1;6, SbPIP2;2, and SbPIP2;6
genes, consequently increasing root water uptake by
enhancing root hydraulic conductance under drought
stress31,91,92. However, inconsistent results were observed
in a Si excluder (tomato), and the expression of the
SlPIP1;3, SlPIP1;5, and SlPIP2;6 genes was not sig-
nificantly affected after Si application under drought
stress32, suggesting that Si did not improve root water
uptake by upregulating aquaporin genes in tomato roots
but instead did so by increasing root hydraulic con-
ductance (as mentioned above).
Therefore, the ability of Si to alleviate drought stress is

mainly attributed to its direct effect through regulating
the activity of aquaporins and gene expression, as well as
its indirect effect through increasing root hydraulic con-
ductance (personal communication with Rony Wallach,
Hebrew University of Jerusalem). However, the molecular
mechanism of Si-mediated alleviation of drought stress is
poorly understood, and the genes related to water uptake
and osmotic adjustment regulated by Si need to be
determined. Further studies should focus on the under-
lying interactions between the Si and processes related to
water relations (water uptake, transport, and loss) under
stress conditions.

Enhancing mineral nutrient uptake and maintaining
nutrient balance
Mineral nutrient uptake and homeostasis can be dis-

rupted by environmental stimuli, especially drought
stresses34,48. It has been reported that the uptake of
nitrogen (N), phosphate (P), potassium (K), calcium (Ca),
magnesium (Mg), iron (Fe), copper (Cu), and manganese
(Mn) increases in response to Si application under
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drought stress30,34,48,93, which not only enhances plant
growth but also improves plant resistance and/or toler-
ance. For example, K and Ca contents were considerably
increased in maize in response to Si application under
drought stress30, in which K benefits plant growth,
osmotic adjustment, and drought tolerance94, and Ca is
critical for achieving better survival with improved plant
growth95, maintaining the integrity of plant membranes
and regulating ion permeability and selectivity96.
The possible mechanisms for Si-induced mineral

nutrient uptake include (i) increasing water uptake and
transpirational driving forces31,92, thus enhancing mineral
nutrient movement from soil into roots; (ii) enhancing ion
mobilization in roots (e.g., Si alleviates Fe deficiency in
cucumber by increasing the apoplastic Fe pool in the roots
and enhancing Fe mobilization in the roots due to Si-
mediated biosynthesis of Fe-chelating compounds)97; (iii)
stimulating membrane H + -ATPase activity driving
mineral nutrient uptake (e.g., Si increased K +uptake in
barley under osmotic stress by activating H + -ATPase in
the membranes)98; (iv) regulating ion transporter genes
(e.g., Si modulates the activities and gene expression of
enzymes involved in Fe acquisition in cucumber)97, while
Si also regulates genes involved in Mn and Cd uptake and
translocation in rice99,100; and (v) enhancing the translo-
cation of metabolites that contribute to root/shoot ion
transport (e.g., Si increases micronutrient transport and
distribution by increasing the content of long-distance
molecules, such as citrate)101. In brief, the uptake of
essential nutrients in response to Si application under
drought stress maintains the nutrient balance, thereby
increasing water uptake and improving plant resistance to
environmental stress.
In summary, the beneficial effects of Si on water uptake

may be attributed to the improvement in root growth,
driving force, root hydraulic conductance, aquaporin
activity, and gene expression, as well as the maintenance
of nutrient balance (Fig. 2). The interactions between the
Si and other essential nutrients under drought stress are
worthy of further study to explore the role of Si in root
water uptake.

Si regulates leaf water loss under drought stress
Numerous researchers have shown that Si application

regulates gas exchange, which in turn contributes to
drought tolerance, in species such as maize93,102, soy-
bean103, cucumber104, and alfalfa105; this ultimately resul-
ted in increased water-use efficiency (WUE) and the
alleviation of drought stress93. In previous studies, Si-
induced reduction in transpiration was considered to be
the result of physical blockade of cuticular transpiration
via cuticle layer thickening from silica deposits106–108,
which contributes to the maintenance of leaf water
potential underwater-deficient conditions54. For example,

wheat leaves are thicker after Si application under drought,
thus reducing transpirational water loss109,110. However, in
maize plants, it was suggested that the lower transpiration
of Si-supplied plants was primarily due to stomatal pores
rather than the cuticular layer93,102, mainly attributed to
the loss of guard cell turgor and changes in the physical
and mechanical properties of the cell walls111–113.
In contrast to the abovementioned observations, some

reports have suggested that Si application increased the
leaf transpiration rate in rice, tomato, pepper, mangrove,
and sorghum under drought stress31,32,48,114,115. This
increased transpiration was attributed to an improvement
in leaf water status via increased water uptake, enhanced
leaf xylem sap flow, and increased leaf water potential
resulting from a larger leaf area110. Such results were also
consistent with those of Zhang et al.116, who suggested
that Si-improved plant growth may be attributed to
increased gas exchange parameters, e.g., transpiration and
stomatal conductance. However, it has also been reported
that Si has no effect on the transpiration rates of
cucumber and rose plants under drought stress condi-
tions117,118, implying that Si-regulated transpiration is
dynamic and depends on root water status, environmental
conditions, plant species, and genotype.
The role of Si in alleviating drought stress by regulating

transpiration is summarized in Fig. 3. When root water

Fig. 2 Water uptake increases in response to Si application under
drought stress conditions. a Silicon (Si) application acts via the
following mechanisms: (1) increasing the root/shoot ratio; (2) inducing
root endodermal silicification and suberization; (3) enhancing the root
driving force; (4) improving root hydraulic conductance (Lp); (5)
increasing aquaporin (AQP) activity; and (6) maintaining nutrient
balance. b Root hydraulic conductance and aquaporins are regulated
by Si under drought stress. Si application improves root Lp by
inhibiting reactive oxygen species (ROS) and hydrogen peroxide
(H2O2) production and increases AQP activity by reducing ROS
production and membrane damage, thus improving water uptake
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uptake was limited, this model suggested that the Si
supply decreased leaf transpiration to reduce water loss by
physically blocking cuticular transpiration or stomatal
movement. In contrast, Si increased leaf xylem sap flow
and transpiration rates under drought stress, corre-
sponding to increased photosynthesis rates. The differ-
ential impact of Si on transpiration rates may be related to
the degree of stress. Under mild stress conditions, Si could
increase root water uptake, corresponding to increased
transpiration rates, and consequently increase plant
growth under drought stress. When root water uptake is
limited under heavy stress, plant leaves close their stomata
to reduce water loss, which occurs most likely through a
systemic signaling event(s). More broadly, leaf transpira-
tion exerts feedback effects on root water transport
models71. With high leaf transpiration rates, the tran-
spiration force driving water across the roots mainly
depends on the hydrostatic pressure difference between
the root medium and xylem, which allows both the apo-
plastic and cell-to-cell pathways to be used. When tran-
spiration is reduced, only a cell-to-cell process is available,
which has high hydraulic resistance71. Nonetheless,
detailed studies are still needed to understand the
mechanisms of Si in whole-plant water relations and to
consider the complex relationship between Si supply and
transpiration in plants under drought.

Si invokes plant defense responses under drought
stress
Modification of signaling pathways
To alleviate environmental stress, plants have developed

a complex signal transduction network. Si application has
been reported to increase plant tolerance by regulating
endogenous plant phytohormone balance and associated
signaling events, including those involving abscisic acid
(ABA), JA, salicylic acid (SA), and ET22,53,119–121.

For example, Si addition enhanced the drought tolerance
of sorghum, at least in part, by regulating the synthesis of
PAs, as well as ACC, the precursor of ET53. Furthermore,
Si decreased JA contents in soybean under drought122,
which suggested Si inhibited an early signaling event
required for JA production. ABA, a stress-responsive
hormone, plays an essential role in stomatal closure when
plants are exposed to various environmental stresses123.
In barley plants, Si application did not affect ABA levels in
the leaves under normal conditions but decreased ABA
homeostasis via transcriptional regulation of ABA bio-
synthesis and degradation pathways, thus improving
stress tolerance124.
Several studies have proposed that Si mediates the

modulation of multiple genes involved in stress-
responsive pathways via the JA, ABA, and phenylpropa-
noid pathways125–128. In rice, Si regulates the transcrip-
tion factors OsNAC5 and OsDREB2A, which trigger the
expression of stress-responsive genes that impart toler-
ance to osmotic stress via ABA-dependent and ABA-
independent pathways, respectively129,130. The Si-
dependent upregulation of transcription factors could
interact with cis-elements located in the promoter regions
of genes involved in the stress response and trigger tol-
erance to abiotic and biotic stresses126. Given the current
knowledge of these phytohormone signaling pathways,
the means through which Si impacts particular compo-
nents and affects crosstalk between signals under stress
conditions must be urgently addressed.

Activation of the antioxidant system
The balance between ROS and antioxidants is disrupted

by environmental stresses, resulting in oxidative damage
to membrane lipids131,132. The antioxidative processes
that reduce ROS in plant cells include both the enzymes
[e.g., SOD, CAT, peroxidase (POD) and ascorbate

Fig. 3 Si influences leaf transpiration under drought stress. a Leaf transpiration can be reduced by Si application under drought stress via (1)
physical blockade of cuticular transpiration via cuticle layer thickening caused by silica deposits and via (2) regulation of stomatal movement by
turgor loss of guard cells and by changes in the physical and mechanical properties of cell walls. b In contrast, Si application increased the leaf water
potential (3) and water uptake (4), thus enhancing leaf xylem sap flow and transpiration under drought stress conditions. In addition, Si has also been
reported to have no effect on leaf transpiration in some cases
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peroxidase (APX)] and nonenzymatic compounds [e.g.,
AsA, GSH, tocopherols, and carotenoids]29,41. ROS
accumulation under drought stress is inversely correlated
with the activities of plasma membrane aquaporins76.
Indeed, aquaporin phosphorylation status and intracel-
lular trafficking are regulated by ROS-dependent signaling
mechanisms133. Therefore, the regulation of water
movement by Si is directly affected by the ROS-mediated
process.
Si application enhances the resistance and tolerance of

plants under drought stress by increasing plant defense
responses, such as those of the antioxidant system,
thereby reducing drought-induced oxidative stress70,111.
In particular, Si increased the activities of SOD, CAT, and
APX in wheat29, tomato41, chickpea70, rapeseed, and
sunflower34, which in turn induced H2O2 production and
lipid peroxidation underwater-deficient conditions.
However, Si application decreased CAT, POD, and SOD
activities and electrolyte leakage in soybean plants under
drought stress35, indicating that oxidative damage
induced by drought was alleviated by Si. Nevertheless, in
drought-stressed wheat leaves, Si addition increased SOD
activity while decreasing H2O2 and malondialdehyde
(MDA) levels and electrolyte leakage29,134,135, suggesting
that the different responses of enzyme activities to
drought stress might be attributed to differences in plant
species, growth stage, and stress degree. An essential role
in alleviating oxidative damage in plants is also played by
nonenzymatic antioxidants, and Si application increased
GSH and AsA contents in drought-stressed wheat29,134.
Moreover, activities of nonenzymatic antioxidants (e.g.,
AsA) in chickpea were induced by Si under drought stress
conditions70, indicating that oxidative damage induced by
drought was mitigated by Si by enhancing the activity of
antioxidative systems. AsA reacts nonenzymatically with

superoxide, H2O2, and singlet oxygen and reacts indirectly
by regenerating tocopherols or synthesizing zeaxanthin in
the xanthophyll cycle, which influences several enzyme
activities and reduces the damage caused by the oxidative
process through synergistic functions with those of other
antioxidants136. The mechanisms by which Si activates
antioxidant systems under drought stress are largely
unknown; but it has been suggested that Si is involved in
regulating the expression of genes related to the pro-
duction and activation of antioxidant enzymes, such as
TaSOD, TaCAT, and TaAPX137 under stress conditions.
Moreover, exogenous application of Si alleviates drought
stress through transcriptional regulation of enzymes
involved in the ascorbate-glutathione (ASC–GSH) cycle
(e.g., GS, GR, MDHAR, and DHAR) and in flavonoid
secondary metabolism (e.g., PAL, CHS, F3H, DFR, and
ANS)137.
To date, it has been found that Si can alleviate oxidative

damage under drought stress by modulating plant anti-
oxidant defense systems based on enzymatic or none-
nzymatic constituents, which contributes to increased
plant growth and whole-plant water balance. However,
the importance of Si-mediated antioxidant defense largely
depends upon plant species, cultivar, and growth stage, as
well as the degree of stress and growth conditions. The
underlying mechanisms by which Si alleviates oxidative
damage under drought still need to be investigated,
especially the role of Si in regulating the balance between
ROS accumulation and antioxidant production.

Conclusion and implications
Drought stress is one of the major environmental fac-

tors that limits plant growth and crop productivity; this
review summarizes the effects of Si on plant resistance
and tolerance to drought stress (Table 1). Si application

Table 1 Morphoanatomical, physiological, biochemical, and molecular processes involved in Si alleviation of drought
stress in plants

Process Resistance mechanism Plant species Response Reference(s)

Morphoanatomical Stimulating seed germination Tomato (Solanum lycopersicum L.) (+) 22~39% [41]

Wheat (Triticum aestivum L.) (+) 13~37% [44]

Maize (Zea mays L.) (NS) [45]

Lentil (Lens culinaris Medik.) (+) 16~55% [46]

Rice (Oryza sativa) (+) 8~10% [47]

Improving root traits Upland rice (Oryza sativa) Root dry weight (+) 23% [28]

Sunflower (Helianthus annuus L.) Root dry weight (NS) [34]

Soybean (Glycine max L.) Root dry weight (+) 34% [35]

Canola (Brassica napus L.
cv. Okapi)

Root dry weight (+) 47% [38]

Rice (Oryza sativa) Total root length (+) 40~65%
Root surface area (+) 19~38%
Root volume (+) 22~40%

[48]
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Table 1 continued

Process Resistance mechanism Plant species Response Reference(s)

Sorghum (Sorghum bicolor L.) Root dry weight (+) 74% [53]

(+) 93% [59]

(+) 110% [66]

Root diameter (+) 16% [66]

[53, 59, 66]

Chickpea (Cicer arietinum L.) Root dry weight (NS) [70]

Cucumber (Cucumis sativus L.) Root surface area (+) 39%
Root mean diameter (+) 18%

[73]

Wheat (Triticum aestivum L.) Root dry weight (NS) [109]

Increasing shoot growth Upland rice (Oryza sativa) Shoot dry weight (+) 18% [28]

Tomato (Solanum lycopersicum L.) Shoot dry weight (+) 42% [32]

Soybean (Glycine max L.) Shoot dry weight (+) 26% [35]

Canola (Brassica napus L.
cv. Okapi)

Shoot dry weight (+) 76% [38]

Rice (Oryza sativa) Shoot weight (+) 97-103% [48]

Plant height (+) 4~9% [50]
[48, 50]

Sorghum (Sorghum bicolor L.) Shoot dry weight (+) 41% [53]

(+) 71% [59]

(+) 78% [66]

[53, 59, 66]

Cucumber (Cucumis sativus L.) Shoot dry weight (+) 32% [68]

Wheat (Triticum aestivum L.) Plant height (NS) [109]

Increasing the root/shoot ratio Upland rice (Oryza sativa) (+) 9% [28]

Tomato (Solanum lycopersicum L.) (NS) [32]

Soybean (Glycine max L.) (+) 7% [35]

Sorghum (Sorghum bicolor L.) (+) 4% [53]

(NS) [59,66]
[53, 59, 66]

Physiological Enhancing osmotic adjustment Upland rice (Oryza sativa) Root osmotic adjustment (+) 134%
Leaf osmotic adjustment (+) 63%

[28]

Sorghum (Sorghum bicolor L.) Root xylem osmotic adjustment (NS) [31]

Leaf osmotic adjustment (+) 15%
Root osmotic adjustment (+) 7% [53]

[31, 53]

Tomato (Solanum lycopersicum L.) Root osmotic adjustment (+) 15% [32]

Cucumber (Cucumis sativus L.) Root xylem osmotic adjustment (+) 39% [73]

Enhancing water-use efficiency
(WUE)

Upland rice (Oryza sativa) (+) 176% [28]

Canola (Brassica napus L.
cv. Okapi)

(+) 20% [38]

Rice (Oryza sativa) (+) 119% [48]

Maize (Zea mays L.) (+) 30% [93]

Alfalfa (Medicago sativa L.) (+) 20~36% [105]

Sorghum (Sorghum bicolor L.) (NS) [110]

Increasing the photosynthetic rate Upland rice (Oryza sativa) (+) 260% [28]

Wheat (Triticum aestivum L.) (+) 59% [29]

Tomato (Solanum lycopersicum L.) (+) 143% [32]

Canola (Brassica napus L.
cv. Okapi)

(+) 61% [38]

Rice (Oryza sativa) (+) 37% [48]

Sorghum (Sorghum bicolor L.) (+) 17% [91]

(+) 118% [110]
[91, 110]

Increasing water potential Upland rice (Oryza sativa) (+) 17~27% [28] [28]

Sorghum (Sorghum bicolor L.) (+) 13% [31]

(+) 16% [110]
[31, 110]

Rice (Oryza sativa) (+) 15% [48]

Wheat (Triticum aestivum L.) (+) 15% [29]

(+) 40% [109]
[29, 109]

Increasing hydraulic conductance Tomato (Solanum lycopersicum L.) Root hydraulic conductance (+) 375% [32]

Cucumber (Cucumis sativus L.) Root hydraulic conductance (+) 160% [73]

Sorghum (Sorghum bicolor L.) Whole-plant hydraulic conductance (+)
52% [31]

Root hydraulic conductance (+) 19% [91]

[31, 91]
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Table 1 continued

Process Resistance mechanism Plant species Response Reference(s)

Modifying transpiration Upland rice (Oryza sativa) (+) 32% [28]
Tomato (Solanum lycopersicum L.) (+) 55% [32]

Soybean (Glycine max L.) (+) 29% [35]

Rice (Oryza sativa) (+) 19% [48]

Sorghum (Sorghum bicolor L.) (+) 24% [31]

(+) 25% [91]
[31, 91]

Alfalfa (Medicago sativa L.) (+) 25-52% [105]

Maize (Zea mays L.) (−) 30% [93]

(−) 33~35% [102]
[93, 102]

Biochemical Activating antioxidant systems Wheat (Triticum aestivum L.) Root SOD (+) 22%
CAT (+) 9%

[29]

Tomato (Solanum lycopersicum L.) Root SOD (+) 74%
CAT (+) 65%

[32]

Sunflower (Helianthus annuus L.) Shoots CAT (+) 20% [34]

Canola (Brassica napus L.
cv. Okapi)

Leaf SOD (+) 116%
POD (+) 175%
Root SOD (+) 20%
POD (+) 27%

[38]

Cucumber (Cucumis sativus L.) Leaf GPX (+) 54%
SOD (+) 21%

[69]

Chickpea (Cicer arietinum L.) Shoot SOD (NS)
CAT (+) 106%

[70]

Sorghum (Sorghum bicolor L.) Root SOD (+)20%
CAT (+) 27%
APX (NS)

[91]

Activating nonenzymatic
antioxidants

Tomato (Solanum lycopersicum L.) Root AsA (+) 62%
GSH (+) 44%

[32]

Sunflower (Helianthus annuus L.) Shoot (+) 19% [34]

Chickpea (Cicer arietinum L.) Shoot (+) 18% [70]

Alleviating oxidative stress Wheat (Triticum aestivum L.) Root H2O2 (−) 30% [29]

Tomato (Solanum lycopersicum L.) Root H2O2 (−) 36~39%
MDA (−) 16~45%
O2

•−(−) 15%~23%

[32]

Sunflower (Helianthus annuus L.) Shoot H2O2 (−) 25%
MDA (−) 11%

[34]

Canola (Brassica napus L.
cv. Okapi)

Leaf H2O2 (−) 9%
MDA (−) 39%
Root H2O2 (−) 47%
MDA (−) 57%

[38]

Cucumber (Cucumis sativus L.) Leaf H2O2 (−) 18% [69]~19% [68]

MDA (−) 24% [69]~52% [68]

Root H2O2 (−)23%
MDA (−) 22%

[68, 69]

Chickpea (Cicer arietinum L.) Shoot H2O2 (−) 42%
MDA (−) 11%
LOX (−) 8%

[70]

Sorghum (Sorghum bicolor L.) Root H2O2 (−) 50% [91]

Molecular Regulating aquaporins Tomato (Solanum lycopersicum L.) SbPIP relative expression (+) 60~165% [32]

Cucumber (Cucumis sativus L.) CsPIP relative expression (+) 90~160% [73]

Sorghum (Sorghum bicolor L.) SbPIP relative expression (+) 18~237% [31]

SbPIP expression upregulated [91]
[31, 91]

Modifying signaling pathways Sorghum (Sorghum bicolor L.) Leaf PAs (+) 80%
Root PAs (+) 67%

[53]

Soybean (Glycine max L.) Gibberellins (GAs) (+) 53%
JA (−) 38%
SA (−) 29%

[122]

Barley (Hordeum vulgare cv.) ABA (+) 97%
Phaseic acid (+) 74%
Dehydro-phaseic acid (DPA) (+) 57%
Cytokinin Ip (+) 76%

[124]

Wheat (Triticum aestivum L.) TaSOD relative expression (+) 26%
TaAPX relative expression (+) 112%
TaCAT relative expression (+) 200%

[137]

Positive (+), negative (−), and no effect (NS no significant difference) of silicon (Si) on plant drought resistance. The response data were calculated as follows: (Si
supply—without Si supply)/without Si supply×100% (under drought stress)
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alleviates plant drought stress by (i) enhancing root water
uptake, mainly through improving root growth, osmotic
driving forces, hydraulic conductance, and mineral
nutrient uptake, as well as by regulating aquaporin (AQP)
activity and gene expression, (ii) regulating leaf tran-
spirational water loss depending on root water status, and
(iii) inducing plant defense responses through modifica-
tion of signaling pathways and activation of antioxidant
systems (Fig. 4). This makes Si application an attractive
approach to improving plant water status and maintaining
plant water balance under drought stress conditions.
Understanding the interactions between Si application
and plant responses will contribute to more efficient fer-
tilization practices or enhanced stress tolerance of crop
plants.
Based on the current knowledge, the distribution of Si

and its functions under stress conditions need further
investigation, especially the differences among Si accu-
mulators, intermediates, and excluders and the strategies
for alleviating drought stress. In addition, published works
are inconsistent, which may reflect the absence of a “one-
size-fits-all” model for Si effects, with differences in
mechanisms depending on species, genotypes, and the
environment. This needs to be recognized before Si can
be successfully applied to agriculture. Therefore, a sys-
tematic assessment of Si effects is needed, in which the
effects could be linked to, for example, specific quantita-
tive trait loci (QTLs) and/or transcriptomic assessments.
In addition, to overcome global environmental changes
and improve crop production, the application method of
Si (e.g., soil-based or foliar) and its effect on plant

tolerance and/or resistance under field conditions still
need to be extensively investigated.
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